
 

 1 

Acoustical shock waves interactions: Signal based determination of 

non-linearities 

Samuel Deleu
1
, Romain Gojon

1
, Jérémie Gressier

1
 

1
ISAE-SUPAERO, Université de Toulouse, Toulouse, France 

samuel.deleu@isae-supaero.fr 

romain.gojon@isae-supaero.fr 

jeremie.gressier@isae-supaero.fr  

Abstract 

The propagation of high amplitude acoustic waves can lead to non-linear effects including the focusing into 

shock fronts. The presence of discontinuities in acoustic signals interacting with simple geometries triggers 

non-linear behaviors. The present paper deals with the analysis of such acoustical shock waves, as it is 

mainly referred to in the literature, with the intent to identify and quantify non-linearities from a signal based 

point of view. This is a key issue to ensure the best source localization method when dealing with high 

amplitude or long range acoustics. While bearing computational efficiency in mind, extensions of classical 

linear equations for acoustics are commonly used to take into account non-linear acoustics. However, the 

following study will solve full Euler equations using high order spectral schemes and a compact limiter to 

improve the numerical solution accuracy of a propagated discontinuity. Two types of waveforms, i.e a basic 

step shock and a more acoustically relevant N-wave will be investigated to segregate and identify the 

different non-linear behaviors from several appropriate parameters. 

Keywords: Nonlinear acoustics, Irregular reflection, Step shock, N-wave, High order Spectral differences. 

1 Introduction 

The localization of acoustic sources has an extensive interest for defense application. Impulse source signals 

are typically triggered from artillery shots from which two types of acoustic signals are identified: the Mach 

wave generated by the bullet displacement and the spherical shock wave generated by the muzzle blast. Both 

signals are strictly non-linear. Determining the non-linearity contribution in the localization process is of 

great importance. Source localization methods are usually based on the linear propagation of the sound 

which is a valid assessment whenever the pressure disturbance is several orders of magnitude lower than the 

ambient pressure. It can be the case in the musical industry or in studies such as Room and Building 

acoustics. However, when dealing with impulsive sound sources, non-linearities have to be taken into 

account. Time reversed acoustics [1] or ray tracing [2] have been widely used in the case of impulsive sound 

sources, without considering the influence of non-linear behavior on acoustical shock interactions with 

structures. The present study aims at identifying such non-linearities from a signal point of view in order to 

assess properly the influence of non-linear effects on the accuracy of the source localization or not. The 

signal based motivation comes from the will to assess such behaviors directly from measured signals that are 

commonly obtained using microphones. 

 

Shock wave reflection onto rigid surfaces represents a fundamental domain of interest. This phenomenon has 

been theoretically investigated by von Neumann [3], although the experimental evidence was already 

performed by Ernst Mach [4] back in 1878. Ben Dor drew inspiration from these studies and gave a thorough 

analysis of the phenomenon in his book [5]. The incident and the reflected shocks, as they propagate along 
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the rigid surface, result in a reflection pattern which can be divided into two main types namely regular and 

irregular. 

When a shock wave propagates over a solid wedge, the induced flow reacts with the surface in such a way 

that a second reflected shock is naturally generated. Indeed, the velocity induced by the passage of the shock 

remains perpendicular to the shock. However, the wedge being a perfectly rigid surface compels the local 

flow field behind the shock to remain parallel to the wedge. The easiest way for the flow to undergo such a 

change in direction is to go through a shock wave. Whenever the incident leading shock and the reflected 

shock share a point attached to the reflecting surface, the reflection is of type regular (RR). However, when 

the maximum flow turning angle at the given incident Mach number is less than the wedge angle, the 

reflected shock generated is unable to turn the induced flow back parallel to the wedge surface, causing the 

meeting point to detach from the reflecting surface: this is called irregular reflection (IR). The detached 

point is defined as the triple point in the case of strong shocks as it links the incident shock, the reflected 

shock and the Mach stem all together. The Mach stem is a discontinuity almost orthogonal to the surface that 

naturally occurs for the flow passing through both the incident and the reflected shock, to be of the same 

angle and pressure as the flow passing in between the triple point and the wedge surface, creating the flow 

condition for its appearance. 

Theoretically, the prediction of such reflection regimes can be done using the Rankine-Hugoniot (RH) 

relations along with appropriate conditions to close the system of equations (3-Shock-Theory) [3]. This is 

valid for strong enough shockwaves. However, when dealing with acoustics, intensity is much lower – 

between a hundred of Pascal to a couple thousands – which leads to low acoustic Mach number values and 

different reflection patterns. The most important difference is the appearance of the von Neumann paradox. 

The latter states the discrepancy from the experimental evidence [6] of what resembles a Mach stem, that is 

not predicted by the theory for sufficiently weak shocks (         ) [7]. 

     
 

Figure 1 – Regime of reflections for plane acoustical shock waves 

 (a) Regular linear (b) Regular non-linear (c) von Neumann. 

The consideration of a paradox is based on the assumption of a three-wave pattern. However, recent 

numerical studies [8] have shown that the condition for such reflection is the existence of a fourth wave, as 

Guderley already suggested back in 1947 [9]. Collela and Henderson [7] proposed the absence of an actual 

triple point with the reflected shock being spread out into a continuous wave before hitting the incident 

shock. Tesdall et. al. [10] provided an extended approach of the 2-D Burger equation expressed in self-

similar coordinates aiming at improving the resolution obtainable near the triple point in weak shock 

reflections. They presented numerical evidence of a structure of reflected shocks and expansion waves 

coming from multiple triple points. This sequence of triple points induces a sequence of tiny supersonic 

regions behind the leading triple point in the case of an inviscid weak shock reflection. Supersonic patches 

occur over a region of the order of several thousandths of the total dimension of the perturbed flow which 

explains why it has only been observed numerically in recent history. The first ones to experimentally 

observe its presence were Skews and Ashworth [11] who carried out experiments on a large-scale so the 

region behind the triple point could be wide enough to be resolved. With better computational efficiency, 

finer simulation showed that the Guderley Reflection (GR), presenting a single supersonic patch structure, is 
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nothing else than an under resolved case of a reflection structure presenting a succession of supersonic 

patches and named Guderley Mach Reflection (GMR) resolving the paradox along the way [10]. 

As stated above, weak shocks have been largely studied. The term acoustical shock was first introduced by 

Keller [12] in 1954. Acoustical shocks are defined by their acoustic Mach number which is the ratio of the 

peak particle velocity over the ambient sound speed     
  
   

  
 [13] which in the case of plane wave can be 

expressed as a function of the acoustic pressure        :     
  
   

    
  with    the ambient density,    

the ambient sound speed and   
    the maximum peak pressure amplitude of the incident shock.  Peak 

pressure is a common term regarding oscillating signals. It has been decided in this study to take the step 

value as the maximum peak pressure when dealing with step shocks. Typical values for acoustical shocks are 

for         [14].  

Acoustical shocks can emerge from various ways. Non-linearity through speed of sound shifts makes the 

wave locally focus or expand along with compression or expansion respectively. This effect is strengthened 

with the wave amplitude and the distance of propagation. The signal can also be discontinuous from the start 

with a low amplitude discontinuity such as a bullet Mach wave, a sonic boom or an electric spark source 

sound signature [15].  

 

The study is composed as follows: the numerical setup is presented in section 2 including the mesh 

definition, the solver and the limiter description; section 3 focuses on the comparison of preliminary 

simulation results for the reflection of a step shock and an N-wave onto a wedge singularity; results are 

compared against available numerical results [16] in order to validate the numerical approach; section 4 

describes the different parameters adopted to identify acoustical shock wave reflection non-linearities from 

two different wave topologies namely the step shock and the N-wave. 

2 Mesh definition and Numerical Setup 

The propagation of acoustical shock waves onto rigid corners is performed using an in-house solver: IC3. 

This solver is a massively parallel high-order computational code based on the use of unstructured meshes 

and aimed at solving the three-dimensional Navier-Stokes equations with explicit time integration. However, 

the scope of this study is limited to full Euler equations. Spectral difference (SD) scheme being intrinsically 

low dissipative, it is a consistent choice when dealing with acoustic propagation. Its stencil compactness 

induces good HPC capabilities, important whenever unstructured mesh is adopted. 

 

The SD schemes have been implemented in IC3 [17] along with a compact spectral limiter SWeP (Spatially 

Weighted Projections) [18] specially developed for the propagation of discontinuities. To our knowledge, 

this is the first time an SD scheme is used for the simulation of the propagation of acoustical shocks. A 

fundamental result of solving non-linear equations using polynomial approximation is the apparition of 

spurious oscillations at the discontinuity. The main purpose of the limiter lies in the inhibition of those 

oscillations that are usually responsible for unwanted noise in the solution as well as computation failure in 

some cases. To do so, the general strategy deployed here is to project the solution on a reduced order base of 

polynomials whenever a discontinuity is detected. The discontinuity detection strategy is based on the one 

developed by Persson for artificial viscosity [19]. The limitation procedure is then applied to any detected 

cell bearer of discontinuity to apply the local polynomial reduction and damp the unwanted oscillations. 

More specifically numerical simulations were carried out using the third-order SD scheme which means that 

each cell contains 3x3 solution points. The solution is updated at a fixed time step –            for step 

shocks and              for N-waves – using a third order Runge-Kutta scheme. The values were chosen 

to respect a CFL condition for spectral schemes:   
  

  
(   )    with p the order of the polynomial. 

Regarding the mesh, we use a 1300x400 2-D grid constructed with an automated tool which transforms an 
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orthonormal cartesian mesh into a mesh adapted to our problem through a bijective analytical function. This 

simple geometry is an asset for the database construction (see 3.1.1) since it is flexible enough to run 

multiple simulations with different values for the wedge angle   . 

 

 

Figure 2 – 2-D domain scheme with probes positions        indicated along a line  . 

Figure 2 illustrates the domain general form along with the different numerical probes we used to obtain 

pressure signals over time, as a microphone would give on a real life application. Ten probes are arranged 

along a line which makes an angle   with the reflecting surface. We chose   [      ]. The shock initially 

located at         propagates in a steady environment with          
   . The left inflow conditions 

are calculated as the downstream flow behind the incident shock using the RH relations for a planar shock 

wave moving at a prescribed velocity   ,  

 

       √  
   

 
    (1) 

 

where    is the acoustic Mach number,   the heat capacity ratio and    the ambient sound speed. 

The same configuration is used for the initialization of the N-wave without the left boundary condition. 

3 Results 

The computed solutions are presented in the next section for both investigated wave topologies namely the 

step shock and the N-wave. The intent is to validate the simulations and to present the numerical databases 

created.  

3.1 Step Shock 

A step shock is not a proper acoustical waveform since acoustical shocks are always preceded or followed by 

non-constant flow which modifies the reflection structure. However, step shock reflections have been widely 

studied and constitute a simple case to investigate acoustical shocks interaction with corners. 

3.1.1 Database Construction 

The shock wave reflection is controlled with the strength of the shock and the geometry of the obstacle it 

hits. We wish to assess and reproduce every reflection pattern available on given ranges of acoustic Mach 

number and wedge angle that are relevant for acoustical shocks. Wedge angle range is chosen to be near the 

validity of the transition criteria   deduced from paraxial approximation equations [20]. For specific values 
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of this parameter given Table 1, different reflection patterns occur. Urban source localization would favor 

ground reflections whenever it comes to monitor such acoustical shocks. This assumption presumes that 

wide angle reflections are less likely to happen which is the reason why large angle values are left aside in 

this study but is currently under investigation. Eventually we chose    [          ] and    [      ]. 

3.1.2 Preliminary Results and Literature Comparison 

In their thorough numerical analysis, Baskar and Coulouvrat [16] suggested critical values of the parameter   

in the case of a step shock for the transition from one reflection regime to another (see description of said 

parameter Table 1).  

 

Figure 3 – Reflection regime transitions for Ma = 0.003 

a) von Neumann Reflection b) Non-linear Regular Reflection c) Linear Regular Reflection. 

Results on Figure 3 were obtained with the same value of acoustic Mach number   . Only the wedge angle 

   variations are responsible for the different reflection patterns. Figure 3.a) indicates a von Neumann 

reflection: incident and reflected shock meet above the reflecting surface, with the presence of a Mach stem 

acknowledging the irregular behavior. On the contrary, Figure 3.b) and 3.c) see their point of reflection well 

attached on the surface which leads to claim both reflections are regular. The angle of incidence is different 

from the angle of reflection on Figure 3.b), on the contrary to Figure 3.c) where they are equals. This leads 

us to segregate 3.b) from 3.c) and introduce two sub-categories amongst regular reflections: regular non-

linear and regular linear respectively. The numerical results shown on Figure 3 are in good agreement with 

what is expected considering the reflection nature of a step shock. 

Table 1 – Different acoustical shock reflection regimes according to the value of the critical parameter   

[16], with    the wedge angle,    heat capacity ratio and     the acoustic Mach number. 

Reflection type  Regime  Values for   
   (  )

√
   

 
  

 

Classical Snell Descartes Regular Linear     

Generalized Snell Descartes Regular Non Linear √      

Von Neumann Reflection Irregular (Non Linear)       

3.2 N-Wave 

DuMond et al. [21] investigated the dependence of the amplitude and period of the N-wave with the miss 

distance (nearest approach) of the bullet’s trajectory and the microphone. They also helped theorize the 

formation, amplitude and duration of the N-wave, along with Landau [22]. The idealized N-wave consists of 
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a sharp positive pressure wave front that decays linearly to a rarefaction equally far below atmospheric 

before an abrupt return to atmospheric pressure. This wave topology is more relevant regarding acoustic 

propagation. 

3.2.1 Database Construction 

From experimental measures [23] and ballistic assumptions made from Whitham formula [24], we were able 

to set a range in amplitude that fits with the characteristic amplitude levels a microphone could experience in 

an urban environment for the detection of acoustical shock waves. The front shock and “tail discontinuity” 

[21] pressure levels of an N-wave being equal in absolute, states the symmetrical character of the N-wave 

studied here. In reality, it appears that the positive length is often greater than the negative part. The 

maximum pressure levels have been measured around 7000 Pa from the muzzle blast for a distance of 1m of 

an AK-47 [23] as well as from the Mach wave of a bullet of an AK-47 from a 300m shot distance and a miss 

distance of 25m which is around 100 Pa in amplitude [25]. Regarding those experimental values, the range 

for our N-wave numerical study has been set to           
 

         with     
 

 being the peak 

pressure of the N-wave leading shock front. We used the RH relations for the shock and unsteady Riemann 

invariant along C- for the expansion fan to propagate the shock towards the preferred direction (from left to 

right).  

3.2.2 Preliminary Results and Literature Comparison 

As previously stated, values of   below 1.414 should lead to an irregular reflection for step shocks. However 

we can observe on Figure 4.a) that the reflection is regular non-linear as the reflected shock is curved and the 

reflecting point is attached to the surface, even though        . The limit of the transition between regular 

and irregular reflection appears to be smaller for an N-wave than for a step shock. This behavior is backed up 

by Baskar numerical analysis [16] as well as Karzova’s experimental study [15]. Both suggested a lower 

value of   for the transition: 0.8 and 1.05 respectively. The difference being that Karzova’s N-waves were 

cylindrical whereas Baskar used plane N-waves which is the same as in this study. 

 

 

Figure 4 – Different N-wave reflection regimes:  

a) Non-linear Regular Reflection b) von Neumann Reflection. 
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4 Signal Based Non-linearities Identification from Different Wave Topologies 

Although the transition criterion gives an indication on the potential non-linearity of a reflection, we wish to 

investigate other potential criteria relevant enough to assess non-linearities. 

4.1 Step Shock 

The signal based analysis is performed on pressure time signature series. The theoretical value of the 

pressure behind a given shock   
   can be determined through RH relations for a plane wave. We define the 

normalized pressure  ̂ such as: 

 

    
   [(  

   )
  

   
  ]   and  ̂  

    

  
     

. (2) 

 

Where    is the shock Mach number,   the heat capacity ratio and    the ambient pressure.  

 

Behind the incident shock,  ̂   , whereas behind the reflected shock,  ̂    in the case of a regular linear 

reflection as stated from the theory. The color-map presented in Figure 5.a) has been constructed from the 

recorded signal of a given numerical probe located in the domain (see Figure 2). Here,        and       

    . The color-map illustrates the relative gap of the maximum value of  ̂ for each couple (     ), from 

the theoretical value that should be obtained in the case of a regular linear reflection. Black lines on Figure 

5.a) represent the limits of the parameter   presented in Table 1. We can observe that (     ) leading to 

values of   above 5 respects the criteria as their color is close to the white shade representing the theoretical 

value of   ̂   . In the same region, the slight tendency for extremely low    to reach values of  ̂ above 2 is 

due to oscillations of the solution that peak at a maximum higher than  ̂   . Any gap from that theoretical 

value of 2 is a proof of a non-linear behavior for the reflected shock, as illustrated on Figure 5.b).  

 

 

 

 

 

 

 

Figure 5 – a) Color-map of the parameter   ̂ for the stepshock database along with the theoretical limit 

values of   for the reflection transition (black lines) ; b) Corresponding pressure-time profiles of a linear 

regular reflection (black) and a non-linear regular reflection (green). 
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4.2 N-Wave 

The expansion behind the leading shock of an N-wave decreases intensity as shown in the shift of the 

transition limit between regular and irregular reflection. Because of this unsteady state, the pressure behind 

the reflected shock of a regular linear reflection does not reach the expected value of 2 (Figure 7) such as the 

ideal case of a step shock. Also, the competition between the pressure flow field behind the reflected leading 

shock and the expansion fan, deprives the latter from leading the rear shock back to its maximum negative 

amplitude; as it is the case before any interaction. This leads the absolute maximum value for the rear shock 

(Figure 6.a)) to remain lower than the maximum values for the front shock on the whole domain (Figure 

6.b)). However, when looking at the pressure differences on Figure 7 (blue), the rear shock undergoes the 

biggest gap. This is due to the over-pressure right behind the reflected rear shock that can be seen as a little 

bump above 0. We noticed here that over-pressure happens for every couple (     ) regardless of whether 

it is linear or non-linear.  

Figure 6 – Color-map of a) the absolute maximum of the rear shock  | ̂ | ; b) the maximum pressure of the 

leading shock  ̂  ; along with reflection transition limit (black lines) from [16] are plotted on both a) and b). 

In the case of non-linear reflections (Figure 7 blue, Figure 9.a)) the bump seems confounded with the 

reflected rear shock. The tail discontinuity reflection is no longer competing with the expansion of the N 

since it happens behind the N, in a steady environment. Therefore, the pressure jump of the reflected shock is 

higher. Also, the rear shock has an absolute value smaller than the leading shock (as seen on Figure 6.b)). 

The combination of those two factors indicates that, across the reflected rear shock, the flow undergoes a 

local over-pressure greater than the difference between    and the pressure behind the incident rear shock, 

hence the overshoot of    behind the rear reflected shock. 

 

 

 

 

 

 

  

Figure 7 – Time pressure profiles for N wave (blue) and step shock (gold). 
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In the case of linear reflections (Figure 9. a) blue), the over-pressure is distant from the rear reflected shock. 

It can be seen as a third bump. The visible structure Figure 9.c) resembles what Baskar and Coulouvrat [16] 

named secondary reflected shock. The self-similarity of the step shock does not apply in the case of an N-

wave and a dynamic transition occurs from irregular reflection back to regular reflection for sufficiently long 

range propagation. This inverted transition induces the rear triple point to hit back the rigid surface. 

According to Baskar et. al [16], it is supposed to be at the origin of the secondary reflected shock. Even 

though the shock structure they observed is very similar to ours, no transition occurred for the reflected rear 

shock since it is linear from the moment it interacts with the wedge. 

In order to assess the non-linearity of an N-wave interaction with a wedge, the statistical distribution of the 

signal is analyzed. More specifically, the skewness of the signal distribution is evaluated. First, the time 

pressure signal obtained for a given probe (Figure 1) is truncated in a consistent way so that the N-shaped 

part of the signal is isolated (Figure 9.a)). This treatment skips the ambient pressure value from the 

distribution. Then, we calculate the skewness of our N-shaped distribution in order to estimate whether its 

interaction with a wedge induces a notable difference. A positive skewness would indicate that the negative 

pressure length is greater than the positive as the right tail of the distribution would be longer than the left 

thus indicating a possible non-linear behavior. Positive pressure values are located on the left side of our N-

wave pressure profile. Negative skewness would indicate the reverse interpretation. Results are displayed on 

Figure 8.a) where skewness values    are referenced from around -0.36 to +0.36. On Figure 8.b), the 

quantity  ̂  | ̂ |  is plotted. Its behavior is analogous to the skewness. From the skewness color-map, we 

can evaluate 6 different regions according to their values as shown on Figure 8.a).  

Figure 8 – Values for the N-wave from signal recorded at        and             :  

a) Skewness    ; b)  ̂  | ̂ |. 

Figure 9 displays the time pressure profiles of two of those six regions (triangles) that have a different 

skewness value,        and            . High positive skewness values are located in two specific 

areas. One at high    (red circle), the other at low    (blue circle), but both for moderate angles around 

   15°. Truncated pressure signals as well as their corresponding histograms and pressure contours from 

which the skewness color-map is drawn can be found on Figure 9 and 10. In the low    area, the time-

pressure signal (blue) can be divided into three zones: leading shock interaction, expansion fan and rear 

shock interaction. Two bumps can be observed in the first part; the smallest one being the incident leading 

shock front and the second one the reflected shock. In between, a pressure decrease expresses the interaction 

with the expansion fan. The same behavior happens for the rear shock. The presence of a decreasing plate 

between incident and reflected shock is noticeable on the histogram distribution for values at -0.5 and 1. In 

the second high skewness value area however, the signal (red) does not show the presence of any reflected 

shock for both leading and rear shock interaction. This is because irregular reflection happens in that case. 

The probe location being below the triple point, as illustrated with a blue dot on Figures 10, the signal is 

logically constituted of a single leading shock front and a single rear shock. The noticeable wavelength 
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difference between red and blue is mainly due to the non-linear propagation of the N-wave that tends to 

spread out as the front shock speed is travelling at a supersonic velocity     and the rear shock speed at a 

subsonic velocity    . The higher the Mach number, the further the spread for a given measuring probes 

location. 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Triangle zones: Time pressure profiles (a), corresponding histograms (b) and pressure fields (c,d). 

As shown above (Figure 8.a)), maximum skewness values occur for two different wave profiles and two 

different reflection regimes, linear and non-linear. Even though the skewness parameter gives information on 

the reflection structure, it is not well suited for the evaluation of non-linearity provoked by the corner 

interaction.  

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 10 – Circle zones: Time pressure profiles (a), corresponding histograms (b) and pressure fields (c,d). 

(c) 

(c) 

(c) 

(d) 

(d) 
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5 Conclusions 

From the full Euler equation solved using spectral difference scheme, the reflection of an acoustical shock 

wave onto a rigid corner is numerically investigated. In particular, the analysis of signals for step shocks and 

N-wave is performed thanks to the construction of a database to cover an acoustically relevant range in the 

(     ) domain. The comparison of our numerical results with existing results from the literature shows a 

good agreement with what is expected. It has been shown that a well suited parameter to identify the 

presence of non-linearities in the case of a step shock is the evaluation of the maximum pressure of the 

measured signal. For N-wave topology, the signal distribution is investigated with the evaluation of the 

signal skewness in the entire (     ) domain. The results are mitigated regarding the efficiency for this 

parameter to segregate non-linear behavior and need further investigation. 
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