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ABSTRACT
Predicting the sound insulation between two spaces is a complex problem since it depends on both direct
sound transmission through the separating element and on flanking transmission paths. When conventionally
analyzing flanking transmission, a diffuse field is assumed in the walls and floors, which are modeled as plates,
while junctions connecting walls and floors are assumed to be of infinite extent. In the present work, a new
approach based on diffuse field reciprocity is proposed to account for the finite length of the junctions in a
rigorous way, while still assuming diffuse vibration fields. This approach relies on the computation of the
direct field dynamic stiffness matrices of the structural elements, which can be analytically derived for thin,
isotropic plates or numerically determined with finite elements and perfectly matched layers for thick plates
or more complex walls or floors. Using the new approach, practical design regression curves are determined
where the length of the junction is considered.

1. INTRODUCTION

Effective protection from noise disturbance can be achieved by ensuring sufficient sound insulation in buildings.
Unfortunately, this is a complex technical problem, since design details and multiple transmission paths can
strongly influence the sound insulation [1]. Both the direct transmission through the element as well as the
flanking transmission can impact the overall sound insulation between two rooms.

When conventionally analyzing flanking transmission, a diffuse field is assumed in walls and floors, which
are modelled as plates. Junctions connecting the walls and floors are assumed to be infinite and the transmission
of vibration across the junction is calculated by integrating the plane-wave transmission over all possible angles
of incidence. Examples of this approach for homogeneous plate systems can be found in [2–4]. Up to now, it
has not been investigated how this conventional approach can be adapted to take the finite junction length into
account.

To address these limitations, an approach based on diffuse field reciprocity is proposed here. The diffuse
field reciprocity relationship relates the blocked reverberant forces in a a vibrating subsystem at the junction
to the direct field dynamic stiffness [5], i.e., the dynamic stiffness of the equivalent unbounded subsystem as
observed at the finite junction. The direct field dynamic stiffness matrices in the wavenumber domain can be
analytically derived for thin, isotropic, semi-infinite plates, as described by Langley and Heron [4]. Since the
assumption of thin plates is only valid at low frequencies, another method is proposed here to determine the
direct field dynamic stiffness using a combination of finite elements and perfectly matched layers. With this
method a combination of 2.5D finite elements and perfectly matched layers is used to model a semi-infinite
plate. The 2.5D finite elements allow modelling the 3D plate with a 2D mesh, taking into account that the
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semi-infinite plate is unbounded along the junction. This is combined with a perfectly matched layer which
absorbs outgoing waves to model the semi-infinite plate in the direction perpendicular to the junction.

In the presented work, both methods are used to calculate the direct field dynamic stiffness along the
finite junction in the spatial domain by introducing a correction for baffled boundary conditions. Due to the
computational efficiency of the new approach, vibration transmission across a large set of junction can be
calculated. From the data acquired from these simulations, practical design regression curves are determined
where the influence of the length of the junction is considered.

2. METHODOLOGY

2.1. Determination of transmission coefficient
A finite junction is considered with a junction length L and N plates connected to the junction which runs

along the x-axis, as shown in Figure 1. The problem addressed in this paper is to calculate the transmission
coefficient, which is defined as the ratio of the power transmitted through the junction from plate j to plate l to
the power that is incident on the junction [1].

τjl =
Wjl

Winc,j
(1)

L

xz
y

1

2

3

...

N

Figure 1: Number of plates connected to a finite junction with length L.

A new approach is presented here, in which the diffuse field transmission coefficient τ̂jl is calculated via the
coupling loss factor η̂jl. The relation between these two is given by the following equation [6]

τ̂jl =
ωπSj
cg,jL

η̂jl (2)

in which Sj is the surface area of plate j, cg,j is the group velocity of the considered wavetype in plate j and
τ̂jl is the diffuse field transmission coefficient between the considered wave types of subsystems j and l.

The coupling loss factor can be determined with the following formula, which is derived using diffuse field
reciprocity [5]
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in which kj is the wavenumber of the considered wavetype in plate j. Combining equations (2), (3) and (4),
gives the expression below for calculating the diffuse field transmission coefficient,
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Equation (5) shows that the diffuse field transmission coefficient for the transmission of bending waves
depends on the junction length, the bending wavenumber of the excited plate and the direct field dynamic
stiffness matrices of all plates that are connected to the junction. The direct field dynamic stiffness matrix is
the dynamic stiffness of the equivalent unbounded subsystem as observed at the finite junction of a considered
subsystem, and can be determined in multiple ways. Two possible methods will be discussed, where the first
uses thin plate theory to analytically derive the direct field dynamic stiffness matrix of a thin, isotropic, semi-
infinite plate in the wavenumber domain. A second method uses a combination of 2.5D finite elements and
perfectly matched layers to determine the direct field dynamic stiffness matrix in the wavenumber domain.
Both methods will be discussed next.

2.2. Derivation using thin plate theory
This section discusses the direct field dynamic stiffness matrix of a thin, isotropic, elastic semi-infinite

plate in the wavenumber domain in the local coordinate system of the plate. The transformation from the
wavenumber domain to the spatial domain will be discussed in section 2.4. Since the in-plane (IP) and out-of-
plane (OOP) behavior of the plate are decoupled, the direct field dynamic stiffness matrix is a block diagonal
matrix [4]
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where kx is the wavenumber in the x-direction, Ej and νj are the Young’s modulus and the Poisson’s ratio of
plate j, respectively, and
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The longitudinal, transverse shear-wave, and bending wavenumbers can be calculated using respectively
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in which ρj and tj are the density an thickness of plate j, respectively.



2.3. 2.5D finite elements with perfectly matched layers
The direct field dynamic stiffness of a plate can also be calculated using a combination of finite elements

and perfectly matched layers, as shown in figure 2. Since the semi-infinite plate is infinite along the junction
in the x-direction, a 2.5D approach can be applied to model the semi-infinite plate in the x-direction. The
x-coordinate is transformed into the wavenumber kx with a Fourier transform to allow representing the 3D
response of the structure and the radiated wavefield on a two-dimensional mesh [7]. Since the semi-infinite
plate extends to infinity in the positive y-direction, the 2.5D finite elements are combined with a perfectly
matched layer. The perfectly matched layer surrounding the finite element model absorbs the wave propagating
outwards from the bounded domain, thus simulating an unbounded subsystem [8]. A schematic representation
of the model can be seen in figure 2. In the part of the plate where 0 ≤ y ≤ Ly, quadratic 8-node elements are
used which are coupled to the quadratic 8-node elements perfectly matched layer elements used in the part of
the plate where Ly ≤ y ≤ Ly + LPML.

LPML Ly
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x

z

Figure 2: 2.5D model of a semi-infinite plate.

2.4. Transformation to the spatial domain of the direct field dynamic stiffness matrix
The finite length of the junction is taken into account in the transformation of the direct field dynamic

stiffness matrices of the plates connected to the junction to the spatial domain. A method using a correction
for baffled boundary conditions is introduced to calculate the direct field dynamic stiffness matrix of a semi-
infinite plate in the spatial domain. The correction for baffled boundary conditions consists of first expressing
the displacements of the junction as a linear combination of a set of shape functions
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in which φs is a vector with four components (translations in x-, y-, and z-direction and a rotation about the
x-axis). The shape functions are constructed as follows
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in which ϕn is the nth sine function (sine functions are used since baffled boundary conditions are considered
outside the junction):

ϕn (x) =


0 if x < 0
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(
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0 if x > L.
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The shape functions ϕn are transformed from the spatial domain to the wavenumber domain. Due to the
baffled boundary conditions the integration is limited from 0 to L.
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The corrected direct field dynamic stiffness matrix can now be calculated using [9]
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in which Φn is a vector with four component consisting of the shape functions in the wavenumber domain,
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where the transformation matrix Rj transforms the direct field dynamic stiffness matrix from the local
coordinate system to the global coordinate system. Numerical integration is used for evaluating the integral in
equation (18). The wavenumbers are sampled linearly; the number of samples and the upper limit wavenumber
value are determined based on the convergence of the solution of the transmission coefficients.

3. RESULTS

The proposed approach will now be applied to an L-, T- and X-junction, as shown in figure 3. The materials
used for the plates in the simulations can be found in table 1. The junction length is varied from 2 m to 8 m in
steps of 1 m.
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Figure 3: Different types of junctions

The thickness of plate 1 (and 3) is varied from 0.05 m to 0.4 m. To determine the thickness of the
perpendicular plate(s), the ratio of characteristic moment impedances is varied from 0.01 to 300. This
sometimes results in an unrealistic thickness for the perpendicular plates(s). Results for thicknesses larger than
0.4 m are ignored. The ratio of characteristic moment impedances ψ

χ is given by
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wherem′j is the mass per unit area of element j,m′⊥j is the mass per unit area of the element perpendicular to
element j,Bj is the bending stiffness of element j andB⊥j is the bending stiffness of the element perpendicular
to element j.

Table 1: Material properties

Material Internal loss factor Density Quasi-longitudinal wavespeed Poisson ratio

ηint [-] ρ [kg/m3] cL [m/s] ν [-]

1: Concrete 0.005 2200 3800 0.2

2: Brick 0.01 1750 2700 0.2

3: Aerated concrete 0.0125 800 1900 0.2

4: Lightweight aggregate 0.01 1400 1400 0.2

5: Dense aggregate 0.01 2000 3200 0.2

6: Calcium-silicate 0.01 1800 2500 0.2

Using a set of junctions with the properties described above, the diffuse bending wave transmission
coefficient is calculated in one-third octave band centre frequencies from 50 Hz to 3150 Hz with the method
described in section 2. Following ISO 12354-1, the low-frequency range is defined as the set of one-third
octave bands from 50 Hz to 200 Hz, the mid-frequency range from 250 Hz to 1000 Hz and the high-frequency
range from 1250 Hz to 3150 Hz. With the new approach it was found that both methods for determining the
direct field dynamic stiffness result in the same transmission coefficient values in the low frequency range.
The analytical expressions for the direct field dynamic stiffness are thus used in the low-frequency range
since these are more computationally efficient. In the mid- and high-frequency range the direct field dynamic
stiffness is determined using 2.5D finite elements combined with perfectly matched layers. A single value for
the transmission coefficient is obtained by calculating the arithmetic average in the considered frequency range.

3.1. Low-frequency range
Figure 4 shows the transmission losses found in the low-frequency range with the new approach, together

with the regression curves from ISO 12354-1 [10]. Here it can be seen that the new approach results in a
prediction for the transmission loss that is generally higher than the regression curve from the international
standard, which was determined using a combination of finite elements methods (FEM), spectral finite element
methods (SFEM) and wave theory [11]. Wave theory assumes an infinite junction, which results in lower
transmission losses compared to the finite element models of finite junction as reported by Hopkins et al. [11].
Figure 4 shows that the junction length has an influence on the transmission loss in the low frequency range.
This is due to the bending wavelengths in the plates being large compared to the length of the junction in this
frequency range, since in the low frequency range mainly bending waves are transmitted between the plates.
Since the influence of the length of the junction can be seen in figure 4, regression curves can be determined
where the length of the junction is considered. The independent variable used in the low frequency range is
PC, which is the variable used by Hopkins et. al. [11] for determining the regression curves which can also be
found in ISO 12354-1 [10]:

PC = log

(
ψ

χ

)
(21)

where ψ
χ is the ratio of characteristic moment impedances (see formula 20). Cubic polynomials are used

(A · PC3 + B · PC2 + C · PC + D) to fit regression curves through the data for the transmission losses per
junction length. The parameters of the regression curves can be found in table 2, together with the coefficient
of determination R2 of the regression curves. For simplicity of use, single values are used for parameters
of the regression curves which only varied slightly for different junction lengths. For the other parameters
a logarithmic fit (E + F log (L)) is used to find the parameter of the regression curve for different junction
lengths. With these regression curves, coefficients of determination of 0.97 and 0.98 are found for all junction
types, indicating a high accuracy of the fit.



(a) L-junction, plate 1 to 2 (b) T-junction, plate 1 to 2 (c) T-junction, plate 1 to 3

(d) X-junction, plate 1 to 2 (e) X-junction, plate 1 to 3

Figure 4: Results using the new approach in low-frequency range (50-200 Hz) together with the regression
curve from ISO 12354-1. Light blue dots correspond to a junction length of 2 m and darkblue to a junction
length of 8 m. The colors used for plotting results of intermediate junction lengths are interpolated between
light- and darkblue.

Table 2: Parameters of the regression curves and coefficient of determination in the low-frequency range

Junction Transmission A B C D R2

L plate 1 to 2 -0.2 3.9 1.3 10.5 − 2.7 log (L) 0.97

T plate 1 to 2 0.2 3.7 -1 13.4 − 3.7 log (L) 0.98

T plate 1 to 3 0.2 4.0 − 1.7 log (L) 6.4 + 2.2 log (L) 16.4 − 4.5 log (L) 0.98

X plate 1 to 2 -0.1 3.7 1.1 15.8 − 4.1 log (L) 0.98

X plate 1 to 3 -0.2 4.3 − 1.5 log (L) 10 + 0.6 log (L) 18.3 − 3.8 log (L) 0.98

3.2. Mid-frequency range
Results for the transmission losses found in the mid-frequency range can be seen in figure 5. A new variable

is introduced for plotting results in this frequency range since previous research has shown that the ratio of
characteristic moment impedances is not the best variable for plotting results in the mid- and high-frequency
range [12]. The new variable is based on the ratio of characteristic moment impedances but also takes into
account the in-plane stiffness of the plates since in the mid-frequency range in-plane waves also influence the
vibration transmission across the junction:

Vmid = log
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(22)

Figure 5 also shown a relation between junction length and transmission loss, thus a similar approach is
followed to the low-frequency range. Quadratic regression curves are used (A ·Vmid

2 +B ·Vmid +C) for ease
of use since cubic curves barely improved the quality of the fit in this frequency range. The parameters of the
regression curves can be found in table 2, together with the coefficient of determination R2 of the regression
curves. Coefficients of determination from 0.95 to 0.98 are found for the different types of junctions.



(a) L-junction, plate 1 to 2 (b) T-junction, plate 1 to 2 (c) T-junction, plate 1 to 3

(d) X-junction, plate 1 to 2 (e) X-junction, plate 1 to 3

Figure 5: Results using the new approach in mid-frequency range (250-1000 Hz) together with the regression
curve from ISO 12354-1. Light blue dots correspond to a junction length of 2 m and darkblue to a junction
length of 8 m. The colors used for plotting results of intermediate junction lengths are interpolated between
light- and darkblue.

Table 3: Parameters of the regression curves and coefficient of determination in the mid-frequency range

Junction Transmission A B C R2

L plate 1 to 2 1.5 0.2 + 0.2 log (L) 14.4 − 2.6 log (L) 0.95

T plate 1 to 2 1.8 −0.5 − 0.2 log (L) 15.1 − 1.0 log (L) 0.96

T plate 1 to 3 1.0 5.8 − 0.8 log (L) 10.1 − 2.9 log (L) 0.97

X plate 1 to 2 1.9 1.6 − 0.7 log (L) 18.4 − 0.8 log (L) 0.95

X plate 1 to 3 1.0 5.9 − 0.2 log (L) 11.2 − 2.4 log (L) 0.98

3.3. High-frequency range
Finally, results for the high-frequency range can be seen in figure 6. Since in this frequency range in-plane

waves have a stronger influence than in the mid-frequency range, again a new variable for plotting results is
introduced:
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Like in the mid-frequency range, quadratic regression curves (A · Vhigh
2 + B · Vhigh + C) are calculated.

The parameters of the regression curves for the different junction types can be found in table 4. In the final
column of this table, the coefficient of determination can be found for the different types of junctions. The
coefficients of determination in the high-frequency range are slightly lower than in the other frequency ranges,
especially for the transmission from plate 1 to plate 2 for a T- and and X-junction. Nevertheless, coefficients of
determination of 0.85 and higher are found in the high-frequency range with the new variable.



(a) L-junction, plate 1 to 2 (b) T-junction, plate 1 to 2 (c) T-junction, plate 1 to 3

(d) X-junction, plate 1 to 2 (e) X-junction, plate 1 to 3

Figure 6: Results using the new approach in high-frequency range (1250-3150 Hz) together with the regression
curve from ISO 12354-1. Lightblue dots correspond to a junction length of 2 m and darkblue to a junction
length of 8 m. The colors used for plotting results of intermediate junction lengths are interpolated between
light- and darkblue.

Table 4: Parameters of the regression curves and coefficient of determination in the high-frequency range

Junction Transmission A B C R2

L plate 1 to 2 0.9 0.2 + 0.2 log (L) 14.8 − 4.5 log (L) 0.94

T plate 1 to 2 0.8 -0.9 18.2 0.91

T plate 1 to 3 0.5 3.0 − 0.5 log (L) 4.1 − 0.9 log (L) 0.98

X plate 1 to 2 0.7 0.3 − 0.7 log (L) 21.7 − 1.0 log (L) 0.85

X plate 1 to 3 0.6 3.3 5.5 0.98

4. CONCLUSIONS

A new approach for calculating vibration transmission across junctions based on diffuse field reciprocity
has been presented, which calculates the transmission coefficient using the coupling loss factor. The coupling
loss factor is calculated based on the direct field dynamic stiffness matrices of the plates connected to the
junction. The direct field dynamic stiffness matrix of a plate can be determined in multiple ways. Two
possible methods were considered in this work, where the first uses thin plate theory to analytically derive the
direct field dynamic stiffness matrix of a thin, isotropic, semi-infinite plate in the wavenumber domain. Since
the assumption of thin plates is only valid at low frequencies, a second method is considered which uses a
combination of 2.5D finite elements and perfectly matched layers to calculate the direct field dynamic stiffness
matrix in the wavenumber domain. To transform this result from the wavenumber domain to the spatial domain
a correction for the finite junction length is applied.

Due to the computational efficiency of the new approach, vibration transmission across a large set of
junctions could be calculated. The results from these simulation could then be used to calculate regression
curves and to asses the influence of the length of the junction on the vibration transmission.



In the low-frequency range good fits are found using the ratio of characteristic moment impedances as the
independent variable for plotting results. In the mid- and high-frequency ranges, new variables were introduced
for plotting the results. The ratio of characteristic moment impedances is based on the bending stiffness and
surface mass of the plates connected to the junction. With increasing frequency, in-plane wave become more
important for the vibration transmission across the junction. The new variables are thus also based on the
in-plane stiffness of the plates connected to the junction.

For all frequency ranges, regression curves are proposed which show a good fit to the data from the
simulations. The new regression curves take into account the influence of the length of the junction on the
vibration transmission across the junction.
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