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Abstract 
A time domain model for predicting diffraction around rigid, infinitely long wedges is presented. An 
approximate solution is derived from the inverse Fourier transform of the frequency domain diffraction 
solutions provided by Oberhettinger. This solution unifies diffraction by plane, cylindrically and 
spherically spreading incident signals and provides a more rigorous extension of the Directive Line Source 
Model (DLSM) for diffraction around an arbitrary wedge. It is invalid for long times, wedge angles close 
to non-diffracting wedge angles and close to the shadow boundaries. The solution improves the accuracy 
of the original DLSM solution. It also provides significant insight into the mechanism of diffraction. 
Universal parameters are defined that describe similarities in the evolution of the diffracted signal around 
wedges of different angles. A generator curve is presented that embodies the diffracted signals for all 
source-wedge-receiver configurations. Finally, it is shown that the diffracted signal at any source-wedge-
receiver configuration can be constructed from the diffracted signal at a uniquely identified source-
receiver configuration around a half plane.  

Keywords:  wedge diffraction, time domain solution, generator curve, universal parameters 

1 Introduction 

The phenomenon of diffraction around wedges is important in acoustics, since it has many applications in 
areas such as oceanography, room acoustics, or noise barriers. It has been extensively studied, both 
theoretically/numerically and experimentally. The present work focuses on approximate analytical solutions 
in the time domain and its main purpose is to extend and enhance the Directive Line Source Model (DLSM) 
[1][2] to wedges of arbitrary angle. The derivation of the new approximate model starts with the frequency 
domain solutions for all three types of simple incident radiation (plane, cylindrical and spherical incident 
waves).  The time domain solutions are derived by their frequency domain counterparts and appropriate 
approximations are introduced to derive the new solution (section 2). The new solution enhances the validity 
region of the original DLSM solution, while it maintains its simplicity. It is shown that universal parameters 
and the generator curve contemplated by the original DLSM for half planes can be extended to diffraction by 
a wedge for an arbitrary angle (section 3). Finally, it is shown that the new approximate solution allows us to 
correspond any source-wedge-receiver configuration of any wedge angle to a source-receiver configuration 
on the half plane (section 4). 
 
The geometry of the problem and its main parameters is shown in Figure 1. A cylindrical coordinate system 
is considered with its z-axis on the diffracting edge of an infinitely long wedge. The angle of the wedge is 
2Ω, and source and receiver can be located anywhere around the wedge In wedge diffraction problems, the 
parameter γ is often used 
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 π-Ω
γ=2

π
. 

(1) 

For γ=2/m and m an odd integer the diffracted signal at any location around the wedge becomes zero. 
Accordingly, the wedges are called non-diffracting wedges (Ω=90ο,135ο…).  For m an even integer, the 
diffracted field resembles that around a half plane and the wedges are called neutral wedges (Ω=0ο,120ο…). 

The lines I-IIB and II-IIIB  shown in Figure 1(b)  are called shadow boundaries and separate the diffracted field 
around the wedge into three regions, each one of which has a different number of geometrical acoustics 
contributions than its neighboring region.  
 

 

Figure 1: Geometry of the problem. 

 

2 Wedge diffraction time domain solution  

2.1 Unified representation of existing frequency domain solutions 

For high frequencies kr>>1 (plane waves) or 0krr /L>>1 (cylindrical and spherical waves), the total 

acoustic field around a rigid wedge can be decomposed into a geometrical optics ( g.o.P ) and a diffraction 

field ( diffP ) component [3]  
g.o. diffP=P +P . (2) 

The diffracted component diffP is the focus of the present work. Oberhettinger [4][5] presented the solution 
of the diffracted field for spherically and cylindrically spreading incident waves and for a plane wave 
incident on a rigid wedge. In the present work, it is proposed to consider the diffracted field caused by all 
types of incident radiation (plane waves, cylindrical and spherical incident waves) at a receiver in a unified 
representation as follows 

spr0

diff 1
P P dζ,

2πγ
= D



  
 

(3) 

where  -1ζ=cosh F  is the equivalent angle between the source and receiver in the complex plane as defined 

in the literature with respect to Sommerfeld Contours [3], F varies with the type of the incident signal  
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(4) 

where c is the speed of sound, sprP stands for a spreading term that depends on the type of the incident wave, 
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where  1
0H is the Hankel function of the first kind,  R iζ is the equivalent distance between the source and 

the receiver in the complex plane 

   2 2
0 0R ζ =r +r -2rr cos iζ , (6) 

and D is a directivity function common for all types of incident radiation 
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(7) 

where  0π±θ±θ /γ represents the summation of four terms. 

2.2 Exact time domain solutions 

In this subsection the impulse response solution is obtained by calculating the inverse Fourier transform of 
the frequency domain solution [Eq. (3)] [6]. The following variable change is employed 

 
1 dF

dζ= dt
sinh ζ dt

, 
(8) 

while combination of Eqs. (4) and (6) yields that  R iζ =ct . For cylindrically spreading incident waves the 

asymptotic forms for the Hankel function    1 ikR-i 4
0H kR = 2 kRπe   for kR>>1is used. The impulse 

response solution obtained by the inverse Fourier transform is 
irf

amp sprp =p p D ,  (9) 

where ampp  is an amplitude factor and sprp shows the time evolution of the diffracted signal around the 

wedge. The terms ampp and sprp  depend on the type of incident signal, while the directivity function D is the 

same as its frequency domain counterpart. 
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(11) 

For spherically spreading signals Equation (9) is identical to the exact Biot-Tolstoy solution [7], which in the 
following will be referred to as BTMS from the names of its main contributors (Biot-Tolstoy-Medwin-
Svensson [8]). For plane incident signals Equation (9), after some algebraic manipulations, it can be 
transformed to the exact time domain solution proposed by Friedlander [9]. The impulse response for 
cylindrically spreading incident signals is approximate (recall the employment of the asymptotic form of the 
Hankel function in the derivation).   

2.3 Approximate time domain solutions 

In this section a new approximate time domain solution is derived. The main advantage of this newly 
presented solution is that it maintains the same simple form of the Directive Line Source Model [1], [2], 
while it extends its region of validity, since it comes from the exact time domain solutions of Eqs. (9) - (11). 
Firstly, we assume times shortly after the arrival of the diffracted signal, that is t L/c  or equivalently 
F 1 .  As a result, using the properties of the hyperbolic trigonometric functions, we obtain  

 sinh = F+1 F-1 1ζ 2 F- . Furthermore, the assumption of short times allows us to use the Taylor 

expansions of hyperbolic trigonometric functions 
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(12) 

Substituting Equations (12) into (9) and after some algebraic manipulation the approximate time domain 
model can be described by two terms (instead of four). In the second step of the derivation, it is assumed 

that 2
dτ=t-t <<tγ and  2Ο τ 0 , where  Ο τ  corresponds to the order of magnitude of τ and dt  is defined 

in Eq. (18). The new approximate solution termed modified Directive Line Source Mode (mDLSM) is the 
following 
 

 irf
t d

1
p =- A * I d ,

4π
 

(13) 

where  is the convolution sign, tΑ  an amplitude parameter that depends on the incident radiation 
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(14) 

dI  represents the time evolution of the signal that is equivalent to radiation from a line source  

d 2 2
d

2
I =

t -t
 

(15) 

and d represents a new directivity function 

 

i,ri r i,r

2d 2
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(16) 

where i,rΦ  is a parameter mainly dependent on the wedge angle and the angular location of the source and 

the receiver. 
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 Moreover, the following time parameters are introduced  
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(18) 

where d t is the time that the signal needs to travel from the edge to the receiver and t   

0

r
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ct=
rr

, cylindrical & spherical
Lc







 

 

(19) 

is another time parameter that if multiplied with the angular frequency ω, it yields the criterion for separating 
the acoustic field into a geometrical and a diffraction component (i.e. for spherical incident radiation 

0ωt krr / L 1  ). The new approximate solution [Eq. (13)] shares the same mathematical simplicity with 
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the Directive Line Source Model in the time domain [2]. Their main difference lies in their different 
directivity functions [Eq. (16)]. Both solutions have two terms  

irf irf ,i irf,rp p +p , (20) 

where irf,ip  will be called for simplicity incident term and is associated to the directivity term id  and the 

incident parameter  0u= θ-θ γ  and irf ,rp  will be called reflected term and is associated to rd  and the 

reflected parameter  0v= θ+θ γ . 

2.4 Accuracy of the new approximate time domain solution  

The accuracy of the proposed solution is investigated by numerically comparing results obtained by the new 
approximate solution (mDLSM), the original DLSM solution (DLSM) and the exact time domain solution 
(BTMS). The comparison is done for spherically spreading incident signals. The comparison results are 
presented in Figure 3. The relative error of the approximate models (mDLSM in Fig. 2(a)(b) and DLSM in 
Fig. 2(c)(d)] with the exact BTMS solution is presented for all combinations of wedge angles Ω  and all 
source-receiver angular locations 0θ, θ  in a single plot.  The combination of all 0θ, θ is done via use of the 

incident and reflected parameters u  and v . The relative error of each term of the approximate solutions 

( irf,ip associated with u and irf ,rp associated with v) is considered separately and compared against the 

corresponding term of the exact BTMS solution (in the form given by Pierce as a solution of two instead of 
four terms [10].)  The red lines in Fig. 2 correspond to the shadow boundaries. As Ω increases (over 160ο) 
the shadow boundaries come closer and closer until they collapse at Ω=180ο. The black-colored area shows 
combinations of parameters that yield relative error over 10% . This happens close to the shadow boundaries 
and for wedge angles close to the non-diffracting wedges. The comparisons are shown for a given time 

* * 2
dτ =(t -t )=0.025(tγ ) . At longer times the black-colored areas expand, at shorter times the areas shrink. 

The time *τ is based on the assumptions made for the derivation of the solution. Finally, in almost all cases, 
the presented mDLSM solution improves the accuracy of the original DLSM solution. 

 

Figure 2: Contours of relative error with the exact BTMS solution of the mDLSM [(a)(b)] and of the DLSM 

solution [(c)(d)] at time * 2τ 0.025(tγ ) . The terms irf ,ip and irf,rp in the mDLSM and the DLSM are 

compared separately against the corresponding terms of the BTMS solution.   

3 Universal Parameters-Similarity Conditions 

Within its region of validity, the presented time domain solution allows us to define a generator curve- a 
single curve that generates all diffracted signals for all source receiver locations, all types of incident 
radiation and all wedge angles. The concept of the generator curve has been introduced in [2] for half planes 
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and it is shown here that it can be extended to wedges of arbitrary angle. Extending the analysis in [2] we 
redefine the two diffraction numbers  
 

i,r
i,r
lag

τ
Π =

τ
, 

(21) 

where dτ=t-t   is the diffraction time (i.e. the time that starts when the diffracted signal arrives at the 

receiver) and i,r
lagτ are the diffraction delay times defined as  

2
i,ri,r

lag

2
i,r

Φ
τ =

π
2 tγ -cot Φ

γ

  
  

  

. 
 

(22) 

2
i,ri,r

lag

2
i,r

Φ
=

π
2 tγ -cot Φ

γ


  
  

  

. 
 

(23) 

The diffraction number Π is a dimensionless number that normalizes τ with the diffraction delay time, which 
in turn is determined by the specific source-wedge-receiver configuration. The diffraction delay times 

describe proximity to the shadow boundaries. Figure (3) shows the contours of i,r
lagτ along with the shadow 

boundaries (red lines) for all wedge angles Ω and all source-receiver configurations. It can be observed that 

both i
lagτ and r

lagτ become zero at the shadow boundaries.  It can also be observed that different source-

wedge-receiver configurations have the same diffraction delay time. The later observation allows to 
determine angular similarities between wedges, as will be shown in section 4. 

Figure 3(c) shows that at a location with large diffraction delay time i
lagτ (i.e. away from the shadow 

boundary) the corresponding impulse response irf ,ip evolves slower with time. At locations with small 

diffraction delay times (close to the shadow boundaries), most of the acoustics energy is released at short 

diffraction times and irf ,ip  evolves faster with time.  

 

 

Figure 3: Diffraction delay times i
lagτ (a), r

lagτ (b) for different wedge angles and source-receiver 

combinations;  impulse responses irf ,ip at locations with different i
lagτ  (c). 
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3.1 Generator curve  

As it was shown in ref. [2] any impulse response solution around a half plane can be incorporated into a 
single curve, called the generator curve which depends solely on the diffraction number Π. In order to obtain 
the impulse response signal from the generator curve, one should scale it with an appropriate scaling 
function. It can be shown that the notion of the generator curve and the scaling function can be extended for 
any arbitrary wedge as follows 

 
i,r

i,r i,r

i,r
ti,r

1/2d lag

4 2
E =

π π Π Π +1

γ π t
S =- A ,

8 t τ Φ

 

(24) 

 

 

 

(25) 

where i,rE corresponds to the generator curve and is the same for all types of incident signals, while the 

scaling factor i,rS  depends on the geometry of the specific source-receiver configuration. It is noted that the 
generator curve is the same as in the case of the half plane, while the scaling factor differs. Any impulse 
response regardless of the type of incident signal can be generated as follows 

irf irf,i irf,r i i r rp =p +p =S *E +S *E  (26) 

Figure 4 depicts the generator curve for the incident term iE [(a)]. From the generator curve all impulse 

responses irf,ip can be derived. Figure 4 shows so generated impulse responses (solid line) for plane [(b)], 
spherical [(c)] and cylindrical [(d)] incident signals for different source-wedge-receiver configurations. The 
impulse responses obtained directly by the analytical solution (dashed line) are the same as the impulse 
responses derived by the generator curve. 

 

Figure 4: The generator curve iE depends only on the dimensionless diffraction number i [(a)]. The 
impulse response for plane [(b)], spherical [(c)], and cylindrical [(d)] incident signals around various wedge 
angles and for various source-receiver locations. The impulse responses obtained directly by the analytical 

solution (dashed line) are the same as the impulse responses derived by the generator curve (solid line). 

4 Mapping of all wedges into a half plane  

Within its region of validity, the presented diffraction solution allows us to map any source-wedge-receiver 
configuration to a uniquely identified source-receiver configuration around a half plane. The correspondence 
can be important as the diffracted field around a half plane has been extensively studied (both theoretically 
and experimentally); more than the diffracted field around arbitrary wedges (particularly closed wedges). 
Consider an arbitrary source-wedge-receiver configuration. For constant radial and z-coordinates of source 
and receiver the following angular mapping is introduced  

irf i irf,i r irf,r
w hp hphp w hp w

p = W p + W p
 

, (27) 
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where i,r

hp w
W


 is called the wedge factor and is the ratio of the directivity functions of the wedge and of 

the half plane  

 
 

i,r i,r i,ri,r
hp hp wi,r w w
i,ri,r i,r i,rhp w

hp w w hp

Π +1 Πd γ Φ
W = =

d 2 Π +1 ΠΦ
. 

 

(28) 

Equations (28) and (29) can be simplified, provided that i,r i,r
w hpΠ =Π . In such case, the wedge factor becomes 

i,r
hpi,r w
i,rhp w
w

γ Φ
W =

2 Φ
. The wedge factor has no time dependence and therefore Eq. (28) can be employed not 

only for the impulse response but for the diffracted signal caused by any arbitrary incident signal, as well. 
(The diffracted signed is obtained by convolving the impulse response with the incident signal. The time-
independent wedge factor does not affect the convolution integral). The equality of two different diffraction 

numbers i i
w hpΠ =Π  and r r

w hpΠ =Π  holds for any τ, provided that i i
lag,w lag,hpτ =τ  and r r

lag,w lag,hpτ =τ . This results 

into the following equations 

2

2 i
, lag

2 r
, lag

Φ -8tτ =0

Φ -8tτ =0

i w

r w





. 

 

(29) 

Equations (30) have one double solution each and therefore an arbitrary source-wedge-receiver configuration 
can be mapped (corresponded) into a source-receiver configuration around a half plane. An example is 
shown in Fig. (5). Consider a wedge Ω=45ο and θ=220ο, θ0=10ο. Solving for the angular locations in Eq. (30) 

the corresponding source and receiver locations around a half plane are * ο * ο
0θ =218.10 ,θ =8.67 . The 

impulse response around the wedge obtained directly by mDLSM for the wedge (solid line) is identical to the 
impulse response obtained by the corresponding configuration around the half plane [via Eq. (28)] (dashed 
lined). The same holds for an N-wave response. 

 

Figure 5: The impulse response and the N-wave response for the wedge configuration shown on the left is 
identical to the impulse response and the N-wave response constructed via Eq. (28) from the impulse 

response for the half plane configuration shown in the middle. 

 
For different wedge angles the ranges of the corresponding source and receiver locations around the half 

plane * *
0θ ,θ  differ.  Figure 6 shows the ranges of the source and receiver location in the half plane * *

0θ ,θ  

that correspond to all source and receiver combinations around two wedges.  It can be observed that the 
mapping regions (hatched areas) around the half plane shrink as the wedge angle increases. 
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Figure 6: Ranges of source and receiver locations around the half plane * *
0θ ,θ  that correspond to all source 

and receiver combinations around a wedge of Ω=45ο and of Ω=110 ο. 

5 Conclusions 

A new approximate time domain solution is presented that describes the diffracted signal around a rigid 
wedge of arbitrary angle. The solution is valid for short diffraction times, away from the shadow boundaries 
and for wedges angles that are not very close to non-diffracting wedges. The new solution allows the 
definition of universal parameters that describe the time evolution of the diffracted signal and of a generator 
curves that embodies all diffracted signals for all source-wedge-receiver configuration. Finally, it is shown 
that the diffracted signal at any source-wedge-receiver configuration can be constructed from the diffracted 
signal at a uniquely identified source-receiver configuration around a half plane. 
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