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Abstract
In computational aeroacoustics for low Mach numbers, the acoustic pertur-
bation equations (APE) allow for a precise separation between the physical
flow quantities and the acoustic quantities. By introducing the acoustic
scalar potential, this set of partial differential equations can be rewritten
without any approximations by the Perturbed Convective Wave Equation
(PCWE). This second order partial differential equation in space and time
fits well to be solved by the Finite Element (FE) method. However, one
has to take care that the convective operator, which is non-symmetric, is
formulated in such a way that the discrete system preserves non-symmetry.
Otherwise, spurious modes occur, which will strongly disturb the numerical
solution and the computation may even become unstable.
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1 Introduction

The convective wave equation (CWE) describes acoustic wave propagation in flow-
ing media. A systematic derivation of CWE has been provided in [1] starting at
the full set of compressible flow equations and applying a perturbation ansatz. The
final partial differential equation is similar to the standard wave equation, but in-
stead of the second order partial time derivative it has a second order substantial
time derivative. Thereby, it has been assumed that the medium is slowly varying
both with position over distances and over times compared to the wavelength and
representative acoustic period, respectively. For application of this convective wave
equation we refer, e.g., to the simulation of ultrasonic flow meters [2], where the
background flow is assumed to be independent of time.
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Recently, in computational aeroacoustics, the reformulation of the acoustic per-
turbation equations (APE) leads to the same convective wave operator and the sub-
stantial derivative of the incompressible flow pressure as a source term. This partial
differential equation has again the scalar acoustic potential as the search for quan-
tity and has been named perturbed acoustic wave equation (PCWE) [3, 4, 5, 6, 7]

In our contribution, we show the derivation of a stable FE formulation by apply-
ing an appropriate transformation of the standard FE formulation. Furthermore,
we demonstrate by an eigenvalue analysis the strong reduction of the real part of
the eigenvalues, and benchmark the numerical computation by an example with
analytical solution.

2 Finite Element Formulation

We consider the following homogeneous convective wave equation

1

c20

D2ψ

Dt2
−∇ · ∇ψ = 0 ;

D

Dt
=

∂

∂t
+ u · ∇ . (1)

It has been derived in [1] for the case of sound in fluids with unsteady inhomoge-
neous flow as well as in [3] for modeling aeroacoustics phenomena. In (1), ψ denotes
the scalar acoustic potential, c0 the speed of sound in the medium and u the mean
flow velocity (constant in time). In a next step, we derive the weak formulation.
In doing so, we introduce an appropriate test function ϕ, multiply (1) by it and
integrate over the whole computational domain Ω

1

c20

∫
Ω

ϕ
D2ψ

Dt2
dx−

∫
Ω

ϕ∇ · ∇ψ dx = 0 . (2)

Expanding the substantial derivative in (2) results in five terms
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c20
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Ω

ϕ
∂2ψ

∂t2
dx

︸ ︷︷ ︸
I

+
1

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx

︸ ︷︷ ︸
IIa

+
1

c20

∫
Ω

ϕ
∂

∂t

(
u · ∇ψ

)
dx

︸ ︷︷ ︸
IIb

+
1

c20

∫
Ω

ϕ
(
u · ∇

)(
u · ∇

)
ψ dx

︸ ︷︷ ︸
III

+

∫
Ω

ϕ∇ · ∇ψ dx

︸ ︷︷ ︸
IV

= 0 . (3)

The term I is a standard bilinear form and needs no special treatment. However,
the terms IIa and IIb are subjected to the mean flow field, which is not necessarily
homogeneous. By exploring the property that the mean flow u is time-independent,
the two terms IIa and IIb in (3) may be combined to∫

Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx +
1

c20

∫
Ω

ϕ
∂

∂t

(
u · ∇ψ

)
dx =

2

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx . (4)

As pointed out in [8], the skew symmetry of the operator has to be preserved in the
discrete form, in order to achieve energy conservation and stability. The eigenvalue
analysis in Sec. 3 will demonstrate that spurious modes arise and some of them even
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with positive real part, so that unstable computations are observed. Therefore, we
split the term (4) in two equal terms and perform an integration by parts to one of
them. In doing so, the integration by parts results in∫

Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx = −
∫
Ω

∇ ·
(
ϕu
) ∂ψ
∂t

dx +

∫
Γ

ϕ
(
u · n

) ∂ψ
∂t

ds

= −
∫
Ω

∂ψ

∂t

(
u · ∇

)
ϕ dx +

∫
Γ

ϕ
(
u · n

) ∂ψ
∂t

ds . (5)

Here, the derivation just holds for the case that u is incompressible or in an FE
setting, where u is piecewise constant for each finite element. Exploring this result,
we may rewrite (4) using (5) by

2

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx =
1

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx

− 1

c20

∫
Ω

∂ψ

∂t

(
u · ∇

)
ϕ dx +

1

c20

∫
Γ

ϕ
(
u · n

) ∂ψ
∂t

ds , (6)

which will guarantee skew symmetry also in the space discrete form.
The term III is also integrated by parts, and for the same assumption towards

the mean flow velocity u as before, we arrive at

1

c20

∫
Ω

ϕ
(
u · ∇

)(
u · ∇

)
ψ dx =

1

c20

∫
Ω

∇
(
uϕ
) (

u · ∇
)
ψ dx

= − 1

c20

∫
Ω

(
u · ∇

)
ϕ
(
u · ∇

)
ψ dx

+
1

c20

∫
Γ

ϕ
(
u · n

) (
u · ∇

)
ψ ds . (7)

The term IV in (3) is treated as usual and results in∫
Ω

ϕ∇ · ∇ψ dx = −
∫
Ω

∇ϕ · ∇ψ dx +

∫
Γ

ϕn · ∇ψ ds . (8)

Collecting all the performed steps, the weak formulation of (1) reads as follows
(assuming u · n = 0): Find ψ ∈ H1 such that

1

c20

∫
Ω

ϕ
∂2ψ

∂t2
dx +

1

c20

∫
Ω

ϕ
(
u · ∇

) ∂ψ
∂t

dx− 1

c20

∫
Ω

∂ψ

∂t

(
u · ∇

)
ϕ dx

− 1

c20

∫
Ω

(
u · ∇

)
ϕ
(
u · ∇

)
ψ dx−

∫
Ω

∇ϕ · ∇ψ dx +

∫
Γ

ϕn · ∇ψ ds = 0 (9)

is fulfilled for all ϕ ∈ H1
0 .

Applying a standard FE ansatz with appropriate FE basis functions Ni(x)

ϕ ≈ ϕh =
∑
i

Ni(x)ϕi(t) ; ψ ≈ ψh =
∑
k

Nk(x)ψk(t) (10)
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results in the following semi-discrete Galerkin formulation

M ψ̈
h

+ Cψ̇
h

+ Kψh = fh . (11)

In (11) ψh denotes an algebraic vector collecting all the unknowns of the scalar
acoustic potential and a dot over a variable denotes the derivative with respect to

time, i.e. ∂2ψh/∂t2 = ψ̈
h
, and fh the right hand side according to a given source

term or boundary conditions. Furthermore, in (11) M , C, K ∈ Rneq×Rneq are the
mass, damping and stiffness matrices with neq the number of unknowns. The time
discretization is performed by a classical Newmark method or in order to achieve
second order temporal accuracy by the Hilber–Hughes–Taylor (HHT) method [10].

3 Eigenvalue Analysis

For the investigation of spurious modes, we perform computations for plane waves
in a channel of length L with uniform background flow (see Fig. 1). As boundary
conditions, we set ψ(t, x = 0) = 0 and ψ(t, x = L) = 0. For this case, the convective
wave equation (1) may be rewritten as [11]

∂2ψ

∂t2
+ 2Mc0

∂2ψ

∂x∂t
+ (M2 − 1)c20

∂2ψ

∂x2
= 0 . (12)

In (12) M denotes the Mach number computed by

M =
||u||
c0

.

For the solution, we choose the ansatz

ψ(x, t) = ψ̂ ej(k x−ωt)

with k the the wave number, ω the angular frequency and j the complex unit.
Substituting this ansatz into (12), results in the solution for k by fixed ω

k1,2 = −
ω
(
M c0 ∓ c0

)(
M2 c20 − c20

) = − ω

(M ± 1) c0
. (13)

By considering the boundary conditions, one obtains the following analytical eigen-
values

ωn =
c0πn

L
(1−M2) . (14)

To compute the discrete eigenvalues of (11), we set

ψh = Ψ est ; s = jω

and substituting it into (11) results in(
s2M + sC + K

)
Ψ = 0 . (15)

This equation is satisfied by the i-th latent root si, and i-th latent vector Ψ of the
λ-matrix problem [12], so that

s2
iMΨi + siCΨi + KΨi = 0 ∀i ∈ 1...neq . (16)
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For the numerical computation, we have computed the matrices by our open source
research software openCFS [13] and then applied Matlab using the function polyeig.
The first smallest non zero eigenvalues should correspond with the frequencies of the
one dimensional channel, i.e. λ ' jωn (higher values of λ correspond to eigenfunc-
tions oscillating in the height H of the channel). Thereby, the discrete eigenvalues
can be interpreted as follows:

� If there are eigenvalues λ, which do not match the analytical ones, we can
say that these are spurious modes.

� If the discrete eigenvalues have a positive real part, the solution becomes
unstable.

� Spurious modes with a large negative real part are quickly damped and do
not disturb the solution.

Figure 1 – Pseudo one dimensional channel with strongly distorted elements.

For the numerical evaluation of the discrete eigenvalues a long and thin channel
with a length to width ratio of 20 : 1 is chosen. The channel is discretized with
distorted quadrilateral elements as displayed in Fig. 1.

Initially the flow velocity is set to zero, which means that the eigenvalues of
the standard wave equation are computed (no convective terms). All computed
discrete eigenvalues are at the imaginary axis, and have zero real part and coincide
with the analytical ones.

In contrast to the stable computations with zero Mach number the situation
looks different when a constant mean flow of Mach numbers 0.1, 0.2, 0.3 is present.
In a first step, we use the standard formulation, which does not utilize an integra-
tion of parts by term IIa, IIb. Therefore, the skew symmetry is not preserved at
the discrete level. As demonstrated by Fig. 2 (left plot), a lot of spurious modes are
added to the system. Even more dramatically, spurious modes with large positive
real part occur which are responsible for unstable computations. In a second step,
we perform the computation of the advanced formulation, for which an integra-
tion of parts is performed for the terms IIa, IIb. Thereby, the skew symmetry is
preserved also on the discrete level. Figure 2 (right plot) displays the computed
eigenvalues, and as one can see, the real part of the eigenvalues have been reduced
by several magnitudes, and do not increase with higher Mach numbers.

4 Benchmark

As a benchmark example, a setup introduced in [14] is chosen as depicted in Fig. 3.
Actually, this benchmark example (see category 4, problem 1 defined by Reflection
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Figure 2 – Discrete eigenvalues for different Mach numbers for standard
(left) and enhanced (right) formulation.

Figure 3 – Computational setup with plotted initial acoustic scalar potential
distribution.

of an acoustic pulse off a wall in the presence of a uniform flow in semi-infinite
space) has been setup to investigate numerical solution methods for the linearized
Euler equations (LEE). Thereby, it can be shown that the LEE for this case can be
reformulated for the pressure p by the convective wave equation as formulated in
(1) for the scalar acoustic potential ψ. This allows us to use the analytical solution
of the pressure p and interpret it as the analytical solution for the acoustic scalar
potential ψ. For the computation, a uniform background flow of u = (0.3c0, 0)T is
prescribed resulting in a Mach number of M = 0.3. The computational domain is
of size 170 m by 100 m. In doing so, the scalar acoustic potential and its first order
time derivative at t = 0 are given by

ψ(x, 0) = e

(
ln(2)

x2+(y+25)2

25

)2
(17)

∂ψ

∂t
= −M ∂ψ

∂x
|t=0 =

2xM ln(2)

25
e

(
ln(2)

x2+(y+25)2

25

)2
. (18)

During the pulse propagation, the acoustic pressure is recorded along the monitor-
ing line plotted in Fig. 3. The domain is discretized by finite elements with basis
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function of first order and an edge length of approximately h = 0.5 m and a HHT
time stepping scheme is use (the difference to a standard Newmark time stepping
scheme is negligible). According to [14], the analytical solution for the acoustic
scalar potential computes by

ψ(x, t) =
1

2α

∞∫
0

e−
ξ2

4α cos(ξt)
(
J0(ξη) + J0(ξζ)

)
ξ dξ . (19)

In (19) J0 denotes the Bessel function of first kind, and the parameters compute by

α =
ln(2)

25
,

η =
√

(x−Mt)2 + (y − 25)2 ,

ζ =
√

(x−Mt)2 + (y + 25)2 .

The acoustic potential distribution at t = 60 s is displayed in Fig. 4. Further-
more, the acoustic scalar potential ψ is evaluated along the line as shown in Fig. 4
and compared to the analytical solution. In doing so, we obtain Fig. 5 demonstrat-

Figure 4 – Computed acoustic potential with marked evaluation line.

ing a perfect match between numerical and analytical results for all investigated
Mach numbers. Therefore, the presented approach provides accurate and stable
results.

Acknowledgements

This project has received funding from the European Union’s Framework Pro-
gramme for Research and Innovation Horizon 2020 (2014–2020) under the Marie
Sk lodowska-Curie Grant Agreement No. [812719].

7



0 0.2 0.4 0.6 0.8 1
Normalized position

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

A
co

us
tic

 p
ot

en
tia

l

M=0.1: FEM
M=0.1: Analytic
M=0.2: FEM
M=0.2: Analytic
M=0.3: FEM
M=0.3: Analytic

Figure 5 – Computed and analytic results for the three Mach numbers along
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