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Abstract 

The prediction of the acoustic field produced by a known sound source around a rigid 2-D obstacle is 
investigated. Consider, for example, the cross section of a house (simplified as a polygon) or an ancient 
theater (simplified as right-angled steps).  Sound is reflected from the edges of the cross section and 
diffracted by its vertices. A method is presented that (i) identifies all propagation paths between source and 
receiver, (ii) associates each propagation path with a corresponding virtual source and (iii) employs newly 
presented empirical formulas to compute the contribution of each virtual source at the receiver location. The 
employment of empirical formulas instead of analytical solutions for the virtual sources reduces the 
computational time by orders of magnitude. Results agree favorably with available measured data. As 
opposed to traditional computational aeroacoustics methods, the computational cost does not depend on the 
frequency or the propagation distance. Finally, as opposed to other similar methods (that handle the 
propagation effects separately), the proposed method accounts for high order diffractions. Also, it can work 
directly in the time domain for the prediction of the impulse response 

Keywords: virtual sources, higher-order diffraction, empirical formulas, impulse response 

1 Introduction 

The acoustic field that a known sound source produces around a rigid 2-D obstacle is investigated. The 
problem is usually handled with computational aeroacouctics methods (e.g. [1]). In this category belong the 
acoustic analogies methods, the Kirchhoff method or other boundary element methods, computational fluid 
dynamics methods, or the two step computational fluid dynamics/computational aeroacoustics formulations. 
These methods have been used extensively and allow predictions around complex geometries and through 
complex propagation environments. Their main disadvantage is the computational cost, which increases 
dramatically with increased propagation distances and increased source frequencies. A widely used 
alternative are virtual source methods, ray tracing and beam tracing methods, which have also been used 
extensively (e.g. [2]). A disadvantage of the ray tracing methods is the undersampling, (i.e the amount of 
rays emanating is not enough to sufficiently cover the whole space and thus find all propagation paths) or the 
creation of caustics. The present work is an extension to the virtual sources method. The virtual source 
method is based on creating virtual sources by mirroring the position of a physical or a virtual source. In the 
present work the effect of first order, as well as higher order diffraction is included. Every physically 
possible propagation path is identified and an elementary solution is associated to each identified 
propagation path (section 2).The method presented here can work directly both in the frequency and in the 
time domain (section 3). Existing analytical solutions termed Directive Line Source Model (DLSM) are 
employed for the formulation of the elementary solutions in both the frequency [3] and time domain [4]. The 
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time domain formulation allows the direct prediction of the impulse response and the involved computations 
are easy and fast to compute. The frequency domain formulations are time consuming, as they require the 
evaluation of Fresnel integrals. Employment of empirical formulas [5] (instead of the frequency domain 
elementary solution) reduces the computational time by orders of magnitude. Results are presented and 
compared with measured data in the frequency domain (section 4) and in the time domain (section 5). Virtual 
source methods do not suffer from undersampling or caustics nor is their computational cost increased with 
frequency or propagation distance. Finally, the presented method handles each propagation path separately 
and thus helps in the physical understanding of the studied problem (see section 5). Compared to our 
previously published work [6] on virtual source methods, the present work incorporates higher-order 
diffraction, the employment of empirical formulas and the direct formulation in the time domain. 

2 Path identification and virtual source types 

A ray tracing algorithm is employed to identify all propagation paths from source (S) to receiver (Rrec). The 
propagation path can be either (i) a direct path - a propagation path directly between source and receiver, if 
the receiver is directly illuminated by the source, or (ii) a path undergoing reflections on the edges Em and/or 
diffractions on the vertices Vn of a 2-D geometry before reaching the receiver. The path S-E1-E2-V4-V7-V10-
E11-E12-Rrec shown in Fig.1 is an example of a propagation path in the form of SREF(M

1
) 

DIF(N)REF(M
2
)Rrec. REF(M

1
) and REF(M

2
) indicate reflection-only portions in the propagation path, where 

sound undergoes M1=2  and M2=2 successive reflections on the edges of the geometry and DIF(N) indicates a 
diffraction-only portion, where sound undergoes N=3 successive diffractions on the vertices of the geometry. 
The corresponding virtual source for a reflection-only portion is a Virtual Point Source (VPS), while for a 
diffraction-only portion a Virtual Edge Source (VES).  For the mixed path, such as SREF(M1) 
DIF(N)REF(M2)Rrec, the virtual source is of a Virtual Source of Mixed Type (VpeS). The mixed type VpeS 
is essentially a VES  corresponding to DIF(N) with its source being not the physical source S, but a virtual 
point source of M1 order, and the receiver not the physical receiver, but a virtual receiver of M2 order. For 
the path depicted in Fig.1 (S-E1-E2-V4-V7-V10-E11-E12-Rrec), the virtual point source of M1=2 order is created 
by 2 successive mirrorings of the physical source. The source illuminates the edge E1, a virtual point source 
(VPS(1)) is created that is located at the mirror location of the source with respect to edge E1.  The created 
point source  VPS(1) illuminates the edge E2, and a new virtual source (VPS(2))  is created at the mirror 
location of VPS(1) with respect to the illuminated edge  E2.  Associated with the mirroring is the distance that 
sound travels from the source to reach the first vertex V4 of the propagation path after it has undergone M1=2 
successive reflections. Or equivalently, the distance between the last virtual point source VPS(M

1
=2)and vertex 

V4. Similarly, the virtual receiver of order M2=2 is created by successive mirroring of the physical receiver 2 
times, on the edges E12 and E11, until the last vertex V10  of the propagation path is reached. This is the same 
path from the vertex V10 to the physical receiver, but traveled on the opposite direction. Here, again, the 
associated distance is the total distance sound travels from vertex V10 to reach the physical receiver.  
 

 
Figure 1 - Example of propagation path. 
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3 Computation of acoustics pressure 

In the present section the mathematical expressions are provided for the different contributions in both the 
frequency and the time domain. In the present work four different types of contributions are considered: (i) 
the contribution from the incident field, (ii) the contribution from reflection-only paths, (iii) the contributions 
from diffraction-only paths, and (iv) contributions from mixed paths. 

3.1 Frequency domain analytical solution 

Contributions from the incident field are taken into account only if the receiver is directly illuminated by the 
physical source 

 0 ,
directikr

direct
direct

e
P P

r
   (1) 

where directr  is the distance between source and receiver and 0P  is the amplitude of the sound source. 

Contributions from reflections-only propagation paths (i.e. Virtual Point Sources) are evaluated as 
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where ( )M
rpr  is the distance between the M-th order VPS, (VPS(M)) and the receiver. An existing analytical 

solution (DLSM) for diffraction in the frequency domain ([3][5]) is employed for the contributions from 
diffraction-only propagation paths (i.e. Virtual Edge Sources) 
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where  1
0H is the Hankel function of the first kind and of zero order, (1)L  the distance (1) 2

0 1( )L r r   (see 

Fig.2), ( )nD a directivity function that corresponds to vertex Vn and is associated to the wedge diffraction 

problem with wedge angle n (see Fig.2), and N N is the number of vertices, if any, that share a common 

edge (in Fig.1  V4 and V5 share a common edge, while V4 and V7 do not). The directivity functions of each 

wedge problem, ( )nD , depend on the corresponding wedge angle n and on the radial and angular locations 
( )

1, , , n
n n n or r   (see Fig.2) 
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where F denotes the Fresnel integral, ( ) ( )
1 2,n n  are functions of the angular locations ( ), n

n o  and the wedge 
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Contributions from mixed paths are also computed via Eq.(3) but with the location of the source and the 
receiver being as indicated in section 2. 

 
Figure 2 - Geometry of the problem of N successive diffractions. 

3.2 Frequency domain empirical formulas 

The computations for the direct path or the reflection-only paths are straight-forward and easy to perform. 
The diffraction contributions, on the other hand, are computationally expensive, as they require the 
evaluation of multiple Fresnel integrals. Empirical formulas are proposed instead. In the present work the 
empirical formulas presented in ref. [5] are employed. They provide the insertion loss IL  
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where ( )rms
dP A  is the root mean square (rms) value of the diffracted field dP  at A, and ( )rms

oP A the rms 

value of the free field at the same location. The acoustic pressure can be obtained by the IL as follows [5]: 
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where directR  is the Euclidian distance between source and receiver and the distances nr  arre as shown in 

Fig.2. The empirical formulas for receivers in the shadow zone are: 
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3.3 Time domain analytical solutions 

One of the advantages of the presented method is that it can work directly in the time domain providing the 
impulse response at a receiver location. The time domain counterparts of Eqs (1) and (2) of the direct signal 
and of the reflection-only signal are 
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where  is the Dirac function. For the computation of the diffraction contribution, an existing time domain 
solution is employed [4]. Based on that solution, the time domain counterpart of the Eq. (3) is obtained :   
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where H is the Heaviside function and ( )nd , similarly to the frequency domain, is the directivity function of 
the n-th wedge problem : 
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It is noted that the time domain computations are much faster than the frequency domain computations and 
therefore there is no need for empirical formulas. 

4 Frequency domain applications 

The case of a wide barrier of infinite height is considered as shown in Fig.3(left). For receiver locations on 
the source side of the obstacle (region A) three paths are identified: (i) the direct path S-Rrec, (ii) a reflection-
only path   S-E2-Rrec and (iii) a diffraction-only path S-V2-Rrec (1

st order diffraction). For receivers in region 
B an additional diffraction-only path is identified S-V2-V3-Rrec (2

nd order diffraction). For receivers in region 
C the reflection-only path S-E2-Rrec is not longer present. For receivers in region D both the direct path S-Rrec 
and the reflection-only path S-E2-Rrec disappear. Only diffraction paths can be identified. Specifically, the 
diffraction-only paths S-V2-Rrec (1st order diffraction) and S-V2-V3-Rrec (2nd order diffraction) can be 
identified. For receivers in region E only the 2nd order diffraction path S-V2-V3-Rrec can be identified.  
 

   
Figure 3 – Wide obstacle of infinite height and regions with different number of propagation paths around it 
(left), wide obstacle on rigid ground and paths for receivers behind the obstacle (middle), specific source-

receiver configuration where measurements were taken (right) . 

Figure 4 (right column) shows the sound field around the obstacle. If 2nd order diffractions are ignored, 
region E is a complete shadow zone (see the middle column of the same figure). If both 1st and 2nd order 
diffractions are ignored, regions D and E become complete shadow zones (left column). The comparison 
shows that ignoring diffraction introduces errors, particularly in regions D and E. It should also be noted that 

the vertices V2 and V3 share a common edge and thus 1N  in Eq.(3). 
 
The case of a wide barrier on a rigid ground is considered next [see Fig.3 (middle)]. The configuration gives 
rise to reflections from the barrier and also from the ground, as well as to diffraction by the vertices of the 
barrier. It is noted that only the vertices V2 and V3 of the barrier give rise to diffraction. The vertices V1 and 
V4 correspond to non-diffracting angles 2Ω=2700. Non-diffracting angles produce no diffraction field. As 
discussed previously, we focus our attention to receiver locations in the shadow zone behind the obstacle. 
Four different paths are identified in the shadow zone [see Fig.3 (middle)]. The first is a diffraction-only path 
S-V2-V3-Rrec, the other three are of the mixed type involving ground reflections on either side of the obstacle 
(S-E1-V2-V3-Rrec, S-V2-V3- E5-Rrec) and on both sides of the obstacle (S-E1-V2-V3-E5- Rrec). 
 
Figure 5 shows results obtained by the analytical solution (DLMS) and by the empirical formulas for 
receiver locations in the shadow zone. It is shown that the results obtained by the analytical solutions are 
close to the results obtained by the empirical solutions. For the results depicted in Fig.5, the maximum 
difference between DLSM and empirical is less than 2.5 dB, while the discrepancies reduce with increasing 
frequency. The main advantage of the empirical formula is that it is order of magnitude faster to compute. 
For a receiver grid of 165000 receivers, the evaluation of the empirical formula takes 8 min to compute, 
while for the analytical solutions 20 hours. The comparisons have been performed with MATLAB on a 
personal computer with AMD Ryzen 7 3700X 4.0 GHz processor. 
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Figure 4 - Wide obstacle of infinite height: geometrical acoustics contributions only (left); geometrical 

acoustics contributions and 1st order diffraction contributions (middle); geometrical acoustics contributions 
and 1st and 2nd order diffraction contributions (right); 500f  Hz 

 
Finally, results are compared with measured data. The calculations are done for a fixed source and receiver 
location [see Fig.3 (right)] at different frequencies with both the analytical solution and the empirical 
formula. Figure 5 shows that predictions obtained by the analytical solution and the empirical formulas are in 
good agreement with each other and also in reasonably good agreement with measured data taken from [7]. 
 

   
Figure 5- Wide obstacle on rigid ground : predicted sound field in the shadow zone employing analytical 

solutions (left) and empirical formulas (middle) for the diffraction contribution, 5000f  Hz; comparisons 
between predictions and measured data for the configuration in Figure 3 taken from [7](right). 

5 Time domain applications 

A cross section of the theater of Epidaurus is considered simplified as right-angled steps. The cross section 
shown in Fig.6 (left) shows the arrangement of the real theater (depicting the lower koilon, the upper koilon 
and the diazoma between them) but the geometrical details (curvatures and recesses) of each step are 
ignored. The sound source is located in the middle of the orchestra (12.86 m horizontal distance from the 
first step) at a height of 1.485 m. The source is a Dirac function and the impulse response is sought at a 
listener seating at an arbitrary row (at a height of 0.8 m above each seat and 0.2 m away from the front vertex 
of each seat).   
 
Several paths are identified. Consider the geometrical acoustics contributions first. The following paths are 
identified: (i) the direct path (at all listeners) (ii) the reflection-only path S-orchestra-Rrec (at all listener 
locations), (iii) the reflection-only path S-back of the seat- Rrec (for listeners at the rows 1-4 and 9-24), (iv) 
the reflection-only path S-orchestra- back of seat- Rrec (for listeners at rows 1-6). Figure 6 (right) shows the 
acoustics signals associated with the above paths at selected listener locations.  
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Paths associated with diffraction by the vertices of the steps are also identified. For example, direct sound 
from the source reaches the vertices of all steps and gives rise to diffracted signals that eventually reach a 
listener seating at an arbitrary row. Figure 7 shows the diffracted signals that are created by the vertices of all 
steps and reach a listener at the 20th step. It is noted that the depicted diffracted signals originate from the 
direct sound: the corresponding paths are S-vertex- Rrec (for all vertices). Similar trails of diffracted signals 
originate from sound reflected on the orchestra. The corresponding paths are S-orchestra-vertex- Rrec, for all 
vertices. Similarly, with the other reflection-only paths mentioned above. The diffracted signals depicted in 
Fig.7regard 1st order diffraction. Second order diffraction has not been considered, since all listeners are 
illuminated directly by the source and higher order diffraction is not expected to affect the results (see 
discussion in previous section). 

  
Figure 6-Cross section of the theater of Epidaurus (left), geometrical acoustics contributions at selected rows 

(right). 

The study of the results has shown that, irrespective of the listener position, diffracted signals coming from 
vertices below the listener come close together and with relative small amplitude. On the other hand, 
diffracted signals from vertices above the listener come further apart, some with very large amplitude and 
almost all with negative polarity (see Fig.7) 

   
Figure 7 – Diffraction contributions originating from the direct signal from the sound source at the 20th row 

(left); diffraction contributions coming from vertices below (middle) and above (right) the receiver. 

One of the advantages of the presented method is that it handles each propagation effect separately. Consider 
the total impulse response predicted at the 20th step as shown in Fig.8 (left). The Speech Echo Criterion is a 
acoustic parameter defined ([8],[9]) 
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3 3
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(t) (t)TS t g dt g dt
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   ,  (21) 

where ( )g t is the total impulse response at the receiver location. The lower the value of TS , the better the 

intelligibility at the receiver location. The Speech Echo Criterion TS is computed at each step of the theater 
and is depicted in Fig.8 (right). The criterion is computed for the total impulse solutions (Geom+Dtot) but 
also for various different subset of contributions: only the geometrical acoustics contributions (Geometrical), 
the geometrical acoustics contributions together with all diffracted contributions coming from steps lower 
than the receiver (Geom+DLow) and the geometrical acoustics contributions together with all diffracted 
contributions coming from steps higher than the receiver (Geom+Dup). The following observations can be 
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made. If only the geometrical acoustics contributions were present (i.e. the direct signal and the reflections 
from the orchestra or the back of the seats), the intelligibility would have been the best among the cases 
considered.  The diffracted signals coming from lower seats do not affect the intelligibility. On the other 
hand, the diffracted signals coming from the upper seats considerably deteriorate the intelligibility. Also, the 
diffracted signals from the upper seats seem to be the most important contribution to the total field. Finally, 
the following observation is worth mentioning. The intelligibility is better at the seats closer to the orchestra 
(and thus to the sound source). Geometrical acoustics contributions and lower diffracted signals cause the 
intelligibility to vary substantially between the lower seats (first rows) and the upper seats (last rows). The 
upper diffracted signals smooth out the discrepancies in the intelligibility between the first seats/rows and the 
last seat/rows.  

  
Figure 8 - Predicted total impulse response at the 20th row (left), predicted Speech Echo Criterion TS on each 

row for different subset of acoustic contributions. 

Finally, the predicted impulse responses are used to compute two acoustics indices. Firstly, the Clarity Index 
(or Klarheit), which characterizes the transparency of the sound ([8],[9]) is computed 
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 The Clarity Index compares the energy that arrives at the receiver the first 80 ms ( 0 80E  ) with the energy 

that arrives after the 80 ms ( 80E  ). The higher the value of the Clarity Index at a receiver location, the 

better the intelligibility of speech. The index 80C is computed at all receiver/step locations and the results are 

shown in Fig.9 (left).  
 

  
Figure 9 - Comparison of predicted values of Clarity Index 80C  (left) and Definition Index 50D  (right) with 

measured values taken at the theater of Epidaurus from ref. [10]. 

It is noted that the predicted values of 80C are reasonably close to the measured valued at receivers at 5th  step 

and the 29th  step (1.65dB difference at the 5th step and 1.69 dB difference at the 29th step ). The measured 
data are taken from field measurements in the theater of Epidaurus published in ref [10]. The discrepancy 
between measured data and predictions at higher steps is expected, because the details of the geometry at the 
high end of the upper koilon are not included in the simplified geometry considered. Also, the geometrical 
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acoustics contributions that arrive from the sides of the curved koilon after 80 ms are not modeled by our 
simplified 2D model. The sharp increase in the values of 80C  for the upper seats predicted by our model is 

attributed to the latter simplification: no arrival after 80ms are predicted. 
The Definition Index (or Deutlichkeit) is also computed ([8],[9]) 

      
50

2 2 0 50
50

00 0

100% 100%
ms E

D g t dt g t dt
E






 
    
 
   . (23) 

The value of the Definition Index is directly related to the intelligibility of speech. The higher the value of 
the Definition Index the better the intelligibility. Comparisons with measured data taken from ref [10] show 
that at the 5th step the predicted value deviates from the measured value by 7 % , while at the 29th step and 
the 48th step the agreement is very good (the deviations are 0.67% and 1.28% respectively) .  

6 Conclusions 

A virtual source method has been presented that predicts the sound field around rigid 2D obstacles. The 
method works both in the frequency and time domain and results are in good agreement with available 
experimental data. Employment of empirical formulas in the frequency domain reduces the computational 
time by orders of magnitude.  
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