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Abstract 
Curves and empirical formulas are presented that predict the diffraction field around finite length edges. 
Compared to analytical solutions, curves and formulas, although less accurate, reduce the computational 
time by orders of magnitude. They can, thus, be of interest for a range of applications that involve 
calculations of diffraction. A newly presented frequency domain solution is employed. It predicts the 
diffraction field around a finite length edge by an analytical expression that does not require numerical 
integration along the edge. Based on this expression, the SPL of the diffracted field around a finite length 
edge is compared to the SPL of the diffracted field around the corresponding infinitely long edge. The 
difference, ΔSPL, is reported as a family of curves dependent solely on two dimensionless parameters: the 
Fresnel number encountered in the study of diffraction by infinitely long edges and a second parameter 
specific to diffraction by finite length edges. The proposed family of curves can be thought of as a 
correction to the results obtained from existing methods (analytical or empirical) that predict the diffracted 
field around an infinitely long diffracting edge. Moreover, a family of curves and corresponding formulas 
are presented that can be used to estimate if a given finite length edge creates a diffraction field that 
approaches the diffraction field around an infinitely long edge (and thus no correction is needed).  
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1 Introduction 

The subject of the present work is sound diffraction by a finite length edge (see Fig.1) and the goal is to 
propose curves or empirical formulas that predict the diffraction field around the finite length barrier. 
Formulas and curves are less accurate than the analytical solutions, but require only a fraction of the 
computational time for their evaluation. This is essential, especially when the evaluation has to be performed 
thousands of times to predict the acoustic field around complex geometries with a large number of 
diffracting edges. A number of empirical formulas or curves exist for diffraction by infinitely long edges [1]-
[4]. To the best of the authors’ knowledge no empirical formulas or curves exist for finite length edges. The 
goal of the present work is to provide the correction that must be applied to results obtained from existing 
methods (analytical [5] [6] or empirical [1]-[4]) that predict the diffracted field around an infinitely long 
diffracting edge. 
 
The analytical solution presented in ref [7] [8] is employed for the derivation of the curves and formulas. The 
analytical solution provides the diffracted field around a finite length edge in the frequency domain. As 
opposed to other analytical solution, it does not require a numerical integration along the edge of the barrier 



 

 
 2

and is applicable to all types of simple incident radiation (plane, cylindrically and spherically spreading 
incident waves).  
 
Figure 1 shows the geometry of the source-edge-receiver problem. A cylindrical coordinate system is 
considered with its z-axis on the diffracting edge. The source is located at  , ,S S Sr z and the receiver is any 

point  , ,R R Rr z . The finite length edge is determined by the location of its end points on the z-axis, 1z and 2z . 

Each end point of the edge is associated with a re-radiation time. That is, the time sound needs to travel from 
the source to the end point of the edge and then to the receiver. The point  on the z-axis 
(    S R R S R Sz r z r z r r    ) is called reference point and is the point where the reference diffraction path 

 22( )R S R SL r r z z     (shortest distance sound travels to reach the receiver via diffraction on an infinitely 

long edge) intersects the z-axis. The lines SBI ( SBI S    ) and SBR ( SBR S    ) are called shadow 
boundaries and separate the sound field around the z-axis into three distinct regions: region I, II, and III. 
Associated with the shadow boundaries are the diffraction delay times  
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where  22 2
1 2 cos( )R S R S R S R SR r r r r z z       is the direct distance between source and receiver, 

 22 2
2 2 cos( )R S R S R S R SR r r r r z z        the distance between the image source and the receiver, and c the 

speed of sound. The diffraction delay time ( )i
lag represents the extra time the sound travels to reach the 

receiver by diffraction compared to the time it travels directly from source to receiver. Small values of 
( )i
lag indicate receiver locations close to the shadow boundary SBI. Similarly, small values ( )r

lag indicate 

receiver locations close to the shadow boundary SBR. It is noted that the diffraction delay times are 
independent of the length of the edge. 

 
Figure 1 – Geometry of the problem. 

 

2 Existing analytical solution and analysis of its terms  

The employed analytical solution [7][8] has two different formulations: one when the reference point   is 
located on the edge, and another one when the reference point is located outside the edge. For the analysis in 
the present work it is convenient to treat the two cases as shown in Figure 2. In the first case, the edge starts 
at the reference point and we will let its ending point move along the z-axis towards infinity, as the length of 
the edge increases. The relevant re-radiation time that is associated with the length of the edge is, therefore, 



 
 

 3

the re-radiation time through the edge’s end point, or the latest re-radiation time end . In the second case, the 
ending point of the edge is located at infinity and we will let its starting point move along the z-axis towards 
the reference point, as the length of the edge increases. Correspondingly, the relevant re-radiation time in this 
case is the re-radiation time through the starting point of the edge, or earliest re-radiation time start . Because 
the finite length edges considered are restricted in the z-semi-axis, the results will be compared against the 
solution for a semi-infinitely long diffracting edge, instead of an infinitely long edge.  

            
Figure 2 – Cases of finite length edge diffraction: reference point ( ) on the edge (left), reference point 

outside the edge (middle), edge extends on both sides of the reference point (right).  
 
In the following we focus our attention to two properties of the analytical solution that will be employed in 
the present work. Firstly: Similarly to the analytical solution for the diffracted field around an infinitely long 
edge, the analytical solution for the diffracted field around a finite-length diffracting edge has two terms, one 
associated with the incident field and its parameters ( ( )

,
i

d finiteP ) and one associated with the reflected field and 

its parameters ( ( )
,
r

d finiteP ) 
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,
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Consider the case of the reference point being located on the edge. The two terms, ( )
,
i

d finiteP , ( )
,
r

d finiteP , as well as 

,d finiteP , are computed as the length of the edge increases (or equivalently as end increases). Representative 

results are shown in Figure 3. It can be observed that as end increases, all three computed quantities ( )
,
i

d finiteP  
( )
,
r

d finiteP and  ,d finiteP  converge to fixed values (which correspond to the respective values for the semi-infinite 

edge). It can also be observed that ,d finiteP is closer to the term that has the smallest diffraction delay time. In 

the depicted case, ,d finiteP is closer to ( )
,
r

d finiteP , as ( ) ( )r i
lag lag  . On the other hand, the pattern that ,d finiteP follows to 

converge to the semi-infinite solution seems to be the same with the term with the largest diffraction delay 
time, ( )

,
i

d finiteP in this case. The case of the reference point located outside the edge is also depicted in Figure 3. 

As expected, all computed quantities, ( )
,
i

d finiteP , ( )
,
r

d finiteP , and ,d finiteP , approach zero, as the length of the edge 

decreases and moves further away from the reference point (or equivalently as start increases). In this case, 

,d finiteP is closer in value to the term that has the smallest diffraction delay time and has the same convergence 

pattern with the term that has the smallest diffraction delay time.  In the depicted case, ,d finiteP is closer to and 

has the same pattern as ( )
,
r

d finiteP , as ( ) ( )r i
lag lag  . 

 
Secondly: Each one of the two terms ( )

,
i

d finiteP , ( )
,
r

d finiteP is obtained from integration with respect to re-radiation 

time  , which in turn is associated to the length of the edge. Specifically, the finite length edge is segmented 
logarithmically as follows: the re-radiation time of the beginning of each segment is 10 times smaller than 
the re-radiation time of the end of each segment, which is the beginning of the subsequent segment and so 
on. The integral along each such segment can be computed analytically as 4 different components. It has 
been numerically observed that the last one of these 4 components is the dominant contribution for each 
segment of the edge. The 4th component corresponding to segment j is approximated by the following 
expression:  
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where 1j  is the re-radiation time via the beginning of the j -th segment and jd is a coefficient corresponding 

to segment j . 
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Figure 3 – The diffracted field due to finite length edge (the total diffraction field ,d finiteP and its terms 
( )
,
i

d finiteP and ( )
,
r

d finiteP ) as a function of re-radiation time (left: reference point on the edge with ( ) ( )r i
lag lag  , right: 

reference point outside the edge with ( ) ( )r i
lag lag  ) 

3 Charts and equations to compute the transition from finite length to 
infinitely long edge diffraction 

In this section we investigate under which conditions the diffraction field caused by a finite length edge 
approaches the diffraction field caused by an infinitely long edge. In such cases, the empirical formulas for 
infinitely long edges can be used and no correction due to the finite length of the edge is needed. Consider 
first the case of the reference point being on the edge. We wish to determine the critical end , ,end critical , for 

which the finite length edge behaves as an infinitely long edge. In this endeavour, we rely on the observation 
stated in section 2 that the 4th component of each segment of the edge provides the dominant contribution.  
Figure 4 shows this contribution, 4 , for each segment of the edge. The horizontal axis depicts the re-

radiation times for the end points of each edge segment j. It can be observed that the segments close to the 
reference point (at beginning of the horizontal axis) provide small contributions. This is attributed to the 
logarithmic segmentation of the edge: the corresponding segments, although close to the reference point they 
have small lengths. Similarly, segments very far from the reference point provide also small contributions. 
The segments are large but are located far from the reference point, thus sound travels large distances to 
eventually reach the receiver. Intermediate segments provide the largest contributions.  
 
As end increases, we seek to find when the contributions 4  become small enough (for example, 15% of its 

maximum value, | max
4 |) and, thus, further increase of the length of the edge (or equivalently of end ) does not 

affect the diffracted field (i.e. the edge has become infinitely long): 

 max
44                (4) 
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where  a coefficient 0.1 0.2   Equation (4) can be solved analytically to provide the ,end critical   
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where 0W is the principal branch of the Lambert solution [9] and the parameter jd is the coefficient of the 

segment, to which the critical re-radiation time corresponds.   The critical re-radiation time is a function of 
frequency ( 2 f  ) and diffraction delay time. It should also be recalled from section 2 that the delay time 

relevant to the convergence to the infinite edge is ( ) ( )max( , )i r
lag lag  . The chart depicted in Figure 5 provides the 

,end critical for any source – finite length edge – receiver configuration with known ( ) ( )max( , )i r
lag lag  and f . 

 
Figure 4 – The value of component 4 versus the re-radiation time along the segments of the edge 

 
Indeed, the critical re-radiation time  ,end critical  provided by the curves in Figure 5 is a reasonably good 

estimate as can be observed in Figure 6, where the critical re-radiation time is marked by the vertical red 
dashed line. For all frequencies, the predicted ,end critical marks approximately the re-radiation time, where the 

diffracted field caused by a finite length edge ( ,d finiteP ) approaches the diffracted field by a semi-infinite edge. 

 
The case of the reference point being outside the edge is considered next. Equation (5) remains the 

same, with the following differences: (i)  ( ) (r)min ,i
lag lag   is chosen instead of  ( ) (r)max ,i

lag lag  (see 

discussion in section 2), (ii) the critical segment is located before the segment where 4 becomes 

max
4 , (iii) for 3j  , the coefficient 2 2

jd  , the argument   of the Lambert solution becomes very 

small and its asympotic form for small arguments can be used instead [9]. Equation (5), thus, becomes 

 ,

ln( )
ln( ) ln( )

1
,    start critical

j

e A
A A A

e A
d






         (7), 

where ( ) ( )min( , ) ln( )i r
j lag lagA d       and ln(12000 )f   is an ad-hoc corrective factor. The chart 

depicted in the right column of Figure 5 provides the ,start critical for any source – finite length edge – receiver 

configuration when one knows the ( ) ( )min( , )i r
lag lag  and the frequency f . As expected, even if a small portion of 
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the edge around the reference point is missing from the diffracting edge, the diffracted field will not 
approach the diffracted field by the corresponding infinite edge. Similarly to Figure 6, Figure 7 shows that 
indeed the critical re-radiation time  ,start critical  provided by the curves in Figure 5 is a reasonably good 

estimate. 
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Figure 5 – Curves that provide the ,end critical (left) [ ,start critical  (right)] for any source – finite length edge – 

receiver configuration as a function of frequency f and of ( ) ( )max( , )i r
lag lag  (left) [ ( ) ( )min( , )i r

lag lag  right)] - reference 

point on the edge (left)[reference point outside the edge (right)) 
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Figure 6– The critical re-radiation time ,end critical from the curves in Figure 5 mark reasonably well the point 

where the diffracted field from a finite edge approaches the diffracted field from a semi-infinitely long edge. 
for low (left), medium (middle) and high(right) frequencies 
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Figure 7 – The critical re-radiation times ,start critical from the curves in Figure 5 mark reasonably well the point 

where the diffracted field from a finite edge starts deviating from the diffracted field of a semi-infinitely long 
edge for low (left), medium (middle) and high(right) frequencies 
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4 Charts for computing the effect of the finite length of the edge 

In this section charts are presented that provide the correction to the sound pressure level around a diffracting 
edge that must be applied because of the finite length of the edge. Specifically, curves will be presented that 
provide the difference 

 )(),(
inf

)(),()(),( ri
initesemi

ri
finite

ri SPLSPLSPL   . (8) 

 

4.1 Universal parameters of the problem 

Our investigation starts with an important numerical observation. The observation has a theoretical 
justification, which is, nevertheless, omitted in the present work. The parameters of the physical problem are 
nine: the frequency of the incident wave ( f ), the coordinates of the source location  , ,S S Sr z , the 

coordinates of the receiver location  , ,R R Rr z , and the location and length of the finite edge provided by the 

z-coordinates of the edge’s ends, 1z and 2z . It was observed, however, that ( )iSPL  depends on only two 
parameters:  

 
)(

)(   ,
i

lag

endi
tag 

  . (9) 

Similarly, ( )rSPL  depends on ( )r
lag  and ( )r

end lag  . The first parameter ( )( )i r
lag  is associated with diffraction 

by  infinitely long diffracting edges and is related to the Fresnel numbers [10], while the second 
parameter ( )( )i r

end lag   is unique to diffraction by finite-length edges. It is further noted, that the dependence 

on two parameters can observed in both cases:  reference point on the edge, as well as, outside the edge. The 
left column of Figure 9 shows two completely different source-finite edge-receiver configurations, which, 
nevertheless, have the same universal parameter ( )i

lag , i.e. ( ) ( )
,1 ,2

i i
lag lag  . It can be observed that the 

deviation of the sound pressure level from the correponding semi-infinitely long diffracting edge 
( ( ),( )i rSPL ) for these different configurations has exactly the same dependence on the normalized latest 
re-radiation time  ( )i

end lag  (i.e. on the normalized length of the diffracting edge). Indeed, for the same 

normalized latest re-radiation time ( ) ( )
,1 ,1 ,2 ,2

i i
end lag end lag    , the value of ( ),( )i rSPL  for both configurations is 

exactly the same.  The same observations can be made for cases where for reference point is outside the 
edge (see the right column of Figure 9) 

 
 

Figure 8 – The correction due to the finite length of the edge ( )( )i rSPL  is the same for different source-finite 
length edge-receiver configurations if they have the same ( )( )i r

lag  and ( )( )i r
end lag   (left: reference point on the 

edge, right: reference point outside the edge). 
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4.2 Curves for the effect of the finite length of the edge 

The case of the reference point being on the edge is considered first. The left column of Figure 10 depicts the 
family of curves that provide the correction due to the finite length of the edge, ( )( )i rSPL , versus the 
normalized latest re-radiation time of the finite length edge ( ( )( )i r

end lag  ) for various ( )( )i r
lag . It is noted that 

for high frequencies ( )( )i r
lag  the corrections have a highly oscillatory behaviour with respect to the re-

radiation time (or equivalently the length of the edge), while for low frequencies the oscillatory behaviour 
does not appear. Also, it is noted that, as expected, the correction approaches zero as the length of the edge 
increases. 
 
The right column of Figure 10 regards the case of the reference point being outside of the edge. The Figure 
depicts the family of curves that provide the correction due to the finite length of the edge, ( )( )i rSPL , versus 
the normalized earliest re-radiation time of the finite length edge ( ( )( )i r

start lag  ) for various ( )( )i r
lag .It is noted 

that as start increases, the missing portions of the edge close to the reference point increase, and as a result the 
diffracted field decreases and increasingly deviates from the diffracted field from a semi-infinitely long edge,  
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L
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Figure 9 – Proposed families of curves that provide the correction due to the finite length of the 
edge, ( )( )i rSPL , versus the normalized  re-radiation time for various ( )( )i r

lag - left column: reference point on 

the edge – right column: reference point outside the edge. 

 

4.3 Use of curves  

The proposed curves provide the correction to the corresponding infinitely long diffracting edge for the two 
different terms of the diffracted field separately. Specifically,   ( )iSPL  provides the correction to the term of 
the diffracted field associated with the incident field, while ( )rSPL the correction to the term associated with 
the reflected field. For the correction to the total diffraction field, the following approximation is proposed:  
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     if min ,

     if min ,

i i i r
tag tag tagproposed

r r i r
tag tag tag

SPL
SPL

SPL

  

  

   
 

 . (11) 

In other words, the correction to the total diffraction field is approximately the same to the correction of the 
term (incident or reflected) that has the minimum lag . Numerical tests have been performed for a range of 

frequencies, source and receiver locations and lengths of finite edges and it has been concluded that in 
almost all cases SPL provided by Eq. (11) ( proposedSPL ) is very close to the SPL computed analytically 
( analyticalSPL ). Figure 10(a) shows that when the reference point is on the edge, the discrepancies between 

proposedSPL  and  analyticalSPL  are above 0.5 dB only for low frequencies and short segment lengths and very 
close to the shadow boundaries.  Accordingly, for cases where the reference point is outside the edge, the 
discrepancies are above 1 dB in the entire region II (the region above the barrier between the two shadow 
boundaries) and close to the shadow boundaries. 
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Figure 10 – Combinations of parameters (black-coloured areas) for which the proposed curves provide 
corrections due to finite length  proposedSPL that differ from corrections obtained by the analytical solutions 

analyticalSPL  (left: reference point on the edge, right: reference point outside the edge)   

 
Finally, we consider the case of the reference point being inside the edge, and the edge extends on both sides 
of the reference point (see right column of Figure 2). The edge is, thus, separated into two different edges 
that can be treated separately. Let (1)SPL be the correction obtained by the proposed curves, as described 
above, for the segment of the edge left of the reference point (segment  ) and (2)SPL the correction for the 
segment of the edge to the right of the reference point (segment  ). The correction for the entire segment 
( )is  

  

(1) ( 2)

20 206 20log 10 10
SPL SPL

BSPL
 



 
      

 
  (12) 

The results obtained are in good agreement with the analytical solutions except for low frequencies, short 
edges and receivers in region II. 

5 Conclusions 

Families of curves and formulas have been derived that provide corrections due to the finite length of the 
diffracting edge. These corrections can be applied to the results obtained from existing methods (analytical 
or empirical) that predict the diffracted field around an infinitely long diffracting edge to account for the 
finite length of the edge. 
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