
 

 1 

Multilabel acoustic event classification for urban sound monitoring at 
a traffic intersection 

 

Ester Vidaña-Vila1, Dan Stowell2, Joan Navarro3, Rosa Ma Alsina-Pagès1 

1GTM- Grup de Recerca en Tecnologies Mèdia, La Salle – Universitat Ramon Llull, Barcelona, Spain 
{ester.vidana, rosamaria.alsina}@salle.url.edu  

 2Department of Cognitive Sciences & Artificial Intelligence, Tilburg University, Tilburg, Netherlands 
3 GRITS- Grup de Recerca en Internet Technologies and Storage, La Salle – Universitat Ramon Llull, Barcelona, Spain 

jnavarro@salle.url.edu 

Abstract 
Persistent exposure to city noise has a great impact on the population’s well-being. Due to their 
intrinsic characteristics, different noise sources have different effects on citizens’ health. 
Automatically detecting and classifying acoustic events in urban environments would allow public 
administrations to monitor the city soundscape and, thus, to identify harmful noise sources and 
quantify their impact on people. One of the main challenges when classifying acoustic data in real-
operation environments, such as urban scenarios, is the presence of simultaneous noise sources. The 
purpose of this paper is to propose a system able to detect and classify, in real-time, a predefined set 
of urban acoustic events that may occur simultaneously. More specifically, the proposed approach 
features a multi-label deep-learning-based algorithm that runs over a low-cost wireless acoustic 
sensing node. The system has been tested using real-world recorded data to evaluate its feasibility 
and accuracy. 
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1 Introduction 

It is estimated than 20% of European Union (EU) population might be exposed to levels of noise 
pollution that are above the limits of current regulations. Indeed, citizen concerns regarding 
environmental health and noise pollution have been consistently rising in the recent years. Acoustic 
noise (or pollution) can be defined as any sound that is loud or unpleasant enough that causes some 
kind of disturbance [1]. Such disturbance may range from difficulties in understanding a voice 
message to some serious adverse health effects such as heart diseases or psychological disorders 
derived from lack of rest or sleep [2]. Nonetheless, it is well-known that not all sound sources have 
the same impact on human disturbance as the sound level is not the only parameter that indicates 
the extent and intensity of noise pollution [3]. Therefore, identifying the sources of those potentially 
harmful sounds has emerged as a hot research topic nowadays. 

So far, several efforts have been made by public and private entities on identifying acoustically 
polluted environments in urban areas [4]. Typically, this is done by either analysing the distribution 
of noise-related complains in a certain area, or by deploying a wireless acoustic sensor network 
(WASN) to automatically monitor the environment [4]. Both approaches entail the same underlying 
challenge: identifying the acoustic sources—considering that several events coming from different 
sources may occur concurrently—that populate a given soundscape.  In this regard, this paper 
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proposes an automatic classification system based on a deep neural network that is targeted to 
analyse acoustic frames in real-time and distinguish the events that appear in them—not only on the 
foreground soundscape but also on the background. Hence, the proposed system has been trained to 
identify different events that may occur concurrently(referred to as a “multi-label” classifier 
system). The deep network architecture has been selected so it can meet the computing constraints 
typically found in the potential application domain of this system (i.e., low-cost WASN [5]). In 
order to assess the classification performance, real-world data has been collected and annotated.  

The remainder of this paper is organized as follows. Section 2 reviews the related work on 
identification of acoustic events in urban environments. Section 3 describes the real-world data 
collection and labelling processes that have led to the training and test sets used to assess the 
classification performance. Section 4 details the proposed multi-label classifier system and its 
evaluation. Finally, Section 5 concludes the paper. 

2 Related work 

There is an increasing demand of an automatic monitoring of noise levels in urban areas, especially 
if this monitoring can give information about the noise source of the measured levels. In this sense, 
several WASN-based projects are being developed in several parts of the world, mainly adapted to 
their requirements. There are some projects that do not only concentrate in noise monitoring, but 
also in air pollution. The IDEA project (Intelligent Distributed Environmental Assessment) [6] 
analyses and describes both pollutants in several urban areas of Belgium. It integrates a sensor 
network based on a cloud platform, and it measures noise and air quality [7]. The MESSAGE 
project, which stands for Mobile Environmental Sensing System Across Grid Environments, [8] not 
only monitors noise, carbon monoxide, nitrogen dioxide, temperature, and they go further for 
gathering also real-time humidity and traffic occupancy in the United Kingdom. Also, the MONZA 
project [9] follow both the idea of monitoring urban noise real-time together with other air 
pollutants in the Italian city of Monza.  

One of the projects that face our challenge in a closer way is Sounds of New York City Project 
(SONYC), which monitors the city using a low-cost static acoustic sensor network [10]. The goal of 
this project is to describe the acoustic environment, identifying noise sources, while monitoring 
noise pollution real-time in a more standard method. It collects longitudinal urban acoustic data, in 
order to process the audios and have generous sampling to work with acoustic event detection [4]. 

Another project with a similar conceptual principle is the DYNAMAP project [11], with two pilot 
WASN deployed in Rome and Milan, in suburban and urban areas respectively. The noise sensors 
aim to remove any specific audio event but road traffic noise, by means of the Anomalous Noise 
Event Detector (ANED) [12] to compute an only-road traffic noise map.  

Deep learning has been applied to urban audio datasets, with encouraging performance [5, 13]. 
However, many research studies are limited to datasets which are unrealistic because they are 
curated from audio libraries rather than urban monitoring, or are single-label annotated, neglecting 
the simultaneous occurrence of sounds [14]. Recent work suggests that multi-label data can improve 
performance [15]. 
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3 Real-world dataset 

3.1 Recording campaign 

To assess the feasibility of a multilabel classifier, the first step is to gather multilabel data. For this 
purpose, two recording campaigns took place in a metropolitan area (centre of Barcelona, Spain). 
To have a wider variety of data, each recording campaign took place on a different season of the 
year. Whereas the first recording campaign was conducted during Autumn 2020 (17 November 
2020), the second one took place during Spring 2021 (31 May 2021). It must be considered that 
during the first recording campaign there were mobility restrictions due to COVID-19 pandemic 
(mobility was allowed only inside municipalities and only essential workers were allowed to work 
in-situ), whereas during the second campaign the restrictions were softened (no mobility restrictions 
at all and some people working properly at their workplace).  

To have even more diversity in data, the hours in which the recording campaigns took place were 
different: whereas the Autumn campaign was recorded from 12:00 to 14:30, the Spring campaign 
was recorded from 15:30 to 18:00.  

The scenario in which we decided to record the acoustic samples was a specific crossroad of the 
Barcelona city centre: the crossroad between Villarroel Street and Diputació Street (plus code 
95M5+H9). This crossroad is located on the Eixample area of Barcelona, which is the expansion 
district of the city. The location was chosen to be able to validate the architecture proposed in [5] in 
a future work. From now on, these recordings will be referred to as Eixample Dataset.  

 

 

 

 
 

Figure 1. Recording campaign and Zoom recorder. 
 

Each recording campaign resulted in about 2 hours and 30 minutes of acoustic data. However, due 
to problems with the batteries of the recorders, the recordings taken on the Spring campaign were 
fragmented into two audio files (one lasting about 1 hour and the other one lasting about 1 hour and 
a half).  
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Four Zoom H5 recorders (see Figure 1) were used to record data: one placed on the middle of each 
corner of the street intersection. Again, the reason behind this decision is to have simultaneous 
audio recordings to validate in future work if physical redundancy helps increasing the 
classification results of the end-to-end system proposed in [5]. Nevertheless, in the machine 
learning study presented in this work, used data comes from the recording of only one sensor, which 
aims to give a clear evaluation of performance at the single-device level. 

3.2 Data labelling 

 
After the recording campaigns, we manually labelled the data corresponding to one specific corner, 
in order to maintain the location and recording conditions. This way, data from about 5 hours of 
recordings (2 hours and a half of each recording campaign) was used for the experimental 
evaluation. As the idea was to use a classification algorithm like the deep neural network proposed 
in [5], we decided to directly label the audio files in blocks of 4-seconds as this is the window size 
selected in [5] as well. Hence, the audio files were split in fragments of that length. As a result, the 
labels file for the dataset contained the starting and ending time of the 4-seconds window and the 
multilabels assigned to that fragment.  

The manual labelling task led the team to this taxonomy, with the following number of  classes: 

Table 1 – Number of events labelled on the dataset. 

Label Description 
Number of occurrences 

1st 
Campaign 

2nd 
Campaign Total 

rtn Background traffic noise 2177 2118 4295 
peop Noise produced by people 300 612 912 
brak 
bird 

motorc 
eng 

cdoor 
impls 
cmplx 
troll 
wind 
horn 
sire 
musi 
bike 

hdoor 
bell 

glass 
beep 
dog 
drill 

Car brakes 
Bird vocalizations 

Motorcycles 
Engine idling 

Car door 
Undefined impulsional noises 

Complex noises that the labeller could not identify 
Trolley 
Wind 

Car or motorbike horn 
Sirens from ambulances, the police, etc. 

Music 
Non-motorized bikes 

House door 
Bells from a church 

People throwing glass on the recycling bin 
Beeps from trucks during reversing 

Dogs barking 
Drilling 

489 
357 
769 
203 
133 
445 
85 
162 
8 
43 
18 
8 
51 
25 
24 
17 
31 
3 
0 

424 
960 
565 
913 
161 
170 
73 
152 
23 
33 
57 
30 
24 
60 
27 
32 
0 
25 
14 

913 
1317 
1334 
1116 
294 
615 
158 
314 
31 
76 
75 
38 
75 
85 
51 
49 
31 
28 
14 
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4 Multilabel classification 

4.1 Feature extraction 

As features, and to maintain compatibility with [5],  a spectrogram was obtained from each 4-
second window of the dataset. Audio files were originally recorded at a sampling rate of 44,100 Hz. 
First, we considered down-sampling the audio files to 22,050 Hz, but after analyzing the labelled 
events we realized that the brak label had all its frequential information at the band of ~17,000 Hz. 
Considering the Nyquist theorem, if the brak event is aimed to be detected, a sampling rate of 
22,050 Hz is not high enough. Hence, we finally decided to keep the original 44,100 Hz frequency 
even if it required more computational resources. 

Each spectrogram was calculated generated with an FFT (Fast Fourier Transform) window of 1,024 
points and using the librosa python library [16]. Next, each spectrogram was individually 
normalized to have a minimum value of 0 and a maximum value of 1, for compatibility with the 
input format of the neural network.  

 

4.2 Train/Validation/Test split 

The audio files obtained on the recording campaign had to be divided into Train/Validation/Test 
subsets. As soundscapes have temporal continuity, and so to evaluate the machine learning 
algorithm correctly, it is important to make sure these three data subsets are taken from different 
times of day. Therefore, we tried to avoid or mitigate the fact that different audio samples with 
similar background noise were placed, for example, on both the Training and Testing set.  

Concretely, the division was done as shown in Figure 2: with divisions into contiguous regions of 
5—71 minutes length. 

 
 

 
 
 

Figure 2 – Train/Validation/Test split of the dataset. 
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Table 2 – Number of events on the Training/Validation/Testing set. 

Label Dataset 
Train Validation Test 

rtn 3029 583 683 
peop 954 100 181 
brak 
bird 

motorc 
eng 

cdoor 
impls 
cmplx 
troll 
wind 
horn 
sire 
musi 
bike 

hdoor 
bell 

glass 
beep 
dog 
drill 

627 
913 
954 
864 
190 
457 
128 
229 
19 
49 
69 
34 
55 
65 
34 
40 
9 
23 
14 

137 
196 
183 
73 
51 
67 
16 
53 
4 
17 
0 
0 
8 
12 
4 
6 
13 
4 
0 

149 
208 
197 
179 
53 
91 
14 
32 
8 
10 
6 
4 
12 
8 
13 
3 
9 
1 
0 

 
This division left the dataset with 209 minutes for Training, 40 minutes for Validating and 48 
minutes for Testing. Note that the division of the two datasets was not exactly even due to the 
distribution of the events. We tried to maximize the variety of the events on each of the datasets 
while keeping their temporal evolution. 

As it can be appreciated in Table 2, the three datasets are highly unbalanced. Note that due to the 
lack of drilling events during the recording campaigns (only 14 consecutive events) we were unable 
to test that category. We discarded the option of splitting the 14 events in the Train and Test sets as 
they belonged to the same drilling machine used in the same location. Also, we decided to remove 
the cmplx sounds from the dataset. As when labelling those sounds, we could not identify their 
specific source, so the conclusion is that they may confuse the system.   

4.3 Data augmentation 

To mitigate the potential effects of class imbalance while training, we decided to add more training 
data and to apply data augmentation techniques to obtain more samples on the poorer classes. 
Additional data was obtained from the BCNDataset [17], that is a dataset containing real-word 
urban and leisure events recorded at night in Barcelona. As BCNDataset was labelled differently 
than the Eixample Dataset, their labels were standardized.  
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Table 3 – Macro and micro average F-1 scores for the experimental evaluation. 
 

Dataset used F1- Macro average F1- Micro average  
Experiment 0 12% 46% 
Experiment 1 39% 70% 
Experiment 2 36% 75% 
Experiment 3 33% 67% 

 

More concretely, on the BCNDataset the labels are provided as [start_second end_second 
label] per each of the acoustic events. To make it compatible with the work presented in this 
paper, the labels were fragmented and grouped in windows of 4-seconds. This way, we were able to 
obtain one-hot encoded multilabel labels. 

The concrete data augmentation technique used in this work consisted on audio mixing, sometimes 
known as mixup [18]. That is, two spectrograms (one belonging to the Eixample Dataset and the 
other belonging to BCNDataset) were added and then divided by two to maintain 0-to-1 
normalization values. As the newly generated sample would contain information of all the events 
tagged in both spectrograms, the labels file was generated by aggregating the one-hot-encoding 
values as well. This process was carried out using pseudo-random spectrogram selection until all 
the classes had about 500 samples on the Training set. 

4.4 Multilabel classification 

The classification of the events was carried out using a deep neural network with a MobileNet v2 
architecture [19] with a size of 8.8MB—which should fit on a low-cost computing node for a 
WASN. The last layer of the classifier was replaced by a fully connected layer with one neuron per 
class and a Sigmoid activation function on each of them. As a result, for each input data, the output 
neurons showed the probability of that class being present on the input spectrogram. Once the 
probabilities were obtained, custom thresholds for each class were applied to determine if the event 
was actually present on the 4-seconds fragment. The thresholds were obtained by maximizing the 
F1-measure of each class on the validation set. As hyperparameters, an ADAM optimizer was used 
with a learning rate of 1e-4 and a weight decay regularization of 1e-5.  

We evaluated the effect of training data on performance. Concretely, four experiments were 
conducted, differing only in the training datasets used:  

• Experiment 0: We used the Training set of the Eixample Dataset and the entire 
BCNDataset, without using data augmentation techniques.  

• Experiment 1: We used the Training set of the Eixample Dataset and the entire 
BCNDataset using data augmentation techniques to have around 500 samples for each class. 

• Experiment 2: We used the same data as in Experiment 1 and we added also data from the 
UrbanSound 8K dataset [14]. The sampling frequency of most of the audio files of the 
UrbanSound dataset is lower than the one used on the recording campaign (i.e., 44100 Hz). 
In order to avoid having half of the spectrogram empty for the UrbanSound samples, each 
audio file was combined with an audio file from Experiment 1 using mix-up aggregation 
(that is, two spectrograms are aggregated, each of them having a different weight on the 



 

 
 8 

final image). Concretely, the audio files from the UrbanSound 8K dataset have only between 
a random 10% to 30% on the final weight of the spectrogram. 

• Experiment 3: We used the same data as in Experiment 2, but we combined the audio files 
from the UrbanSound 8K dataset 10 times to increase the size of the Training data. 

The metrics that we used to compare the results are the macro and micro average F1-scores [20]. 
Whereas the first metric gives an overall classification result without taking into account the 
number of samples of each class (i.e., all the classes have the same importance), the second one 
considers the number of samples of each class of the dataset (i.e., those classes that have a greater 
number of samples on the Test set have more importance). We present both results as, on the one 
hand, the macro average could be biased because of the limitations of the Test set in some classes 
(e.g., there is only one dog event, which means that the F1-measure for that class will be binary); 
and, on the other hand, the micro average could be biased as well as the rtn class is present in 
almost all the audio samples. Hence, whereas the first metric is mostly affected by the performance 
of the smaller classes of the dataset, the second one is mostly affected by the performance of the 
larger classes of the dataset. Table 3 shows the classification results for each of the experiments. 

Table 4 – Evaluation metrics of the system. 

Label True Negative False Positive False Negative True Positive F1-score 
rtn 0 37 10 673 0,97 
peop 445 94 65 116 0,59 
brak 485 86 78 71 0,46 
bird 473 39 47 161 0,79 
motorc 397 126 67 130 0,57 
eng 492 49 44 135 0,74 
cdoor  655 12 40 13 0,33 
impls 527 102 35 56 0,45 
troll 651 37 17 15 0,36 
wind 693 19 0 8 0,46 
horn 703 7 5 5 0,45 
sire 697 17 5 1 0,08 
musi 698 18 4 0 0 
bike 665 43 11 1 0,04 
hdoor 667 45 4 4 0,14 
bell 707 0 3 10 0,87 
glass 696 21 1 2 0,15 
beep 708 3 9 0 0 
dog 718 1 1 0 0 

 
We think that the data used on Experiment 1 offers the fairest trade-off between the performance of 
the system on large and small classes. Table 4 shows the individual classification metrics per each 
class of the dataset based on the results obtained in Experiment 1. As it can be seen, the system has 
a good performance when classifying events with more than 100 instances on the Validation and 
Test set (values highlighted in Table 4). However, it behaves poorly when classifying those classes 
with few instances except for the bell event. This may be due to the fact that in the recording 
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location, the saliency of the recorded bells was higher than the background noise, so all the recorded 
bells are foreground events. On the contrary, events such as sirens or music were occasionally 
mixed with background noise depending on the distance between the noise source, the sensor and 
the simultaneous acoustic events happening at the same time.  
 

5 Conclusion 

In this work, progress has been made in the training, testing and validation of deep neural networks 
algorithms with a very relevant focus on the use of real-world data. The data gathering process has 
been detailed and the strategies to enrich these data (i.e., data augmentation) to balance the corpus 
and, thus, improve the performance of the classifier have been shown. Upon the conducted 
experiments, we foresee that adding a memory layer to the system may increase the classifier 
performance. That is, we believe that knowing the probability of certain events in certain cases may 
help. This hypothesis will be further evaluated in future works. 
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