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Abstract 
Traditional acoustic diffusers are based on quarter-wavelength resonators, and they are commonly built using 
slotted panels. The use of this kind of resonators implies that these panels can hardly be manufactured to 
work at low frequencies due to the resulting high thickness. Recently, the use of resonant metamaterials 
based on Helmholtz resonators, i.e., metadiffusers, has been proposed to reduce panel thickness. In this work 
we propose the use of plate and membrane (I will use only plate) resonators to go one step further in 
managing sound reflection using ultrathin metasurfaces of deep subwavelength dimensions. Using a 5.7-cm 
thick panel, a mean diffusion coefficient of 0.8 in the range from 400 to 800 Hz has been numerically and 
theoretically observed. The potential of resonant metamaterials based on plate and membrane resonators is 
demonstrated and its limitations discussed. This study provides the guidelines and design tools for 
prototyping these low-thicknesses panels to generate diffuse reflections. 
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1 Introduction 
Nowadays, research on acoustic metasurfaces is very active. However, the use of locally resonant structures 
to control sound diffusion in room acoustics dates to the late 70's, when arrangements of quarter-wavelength 
resonators, called phase-grating diffusers, were introduced by M. Schröeder to generate diffuse reflections 
[1]. These acoustic devices have found practical applications in room acoustics and are widely used in many 
broadcast studios, modern auditoria, music recording, control, and rehearsal rooms [2]. Recently, 
metamaterials were proposed to reduce the thickness of Schröeder diffusers by using Helmholtz resonators 
instead of quarter-wavelength resonators [3] or slow-sound metasurfaces with deep-subwavelength 
resonators [4], [5]. Recently, the scattering properties of spiral metasurfaces based on holographic acoustic 
vortices was presented [6], by making use of vorticity it was possible to design broadband and non-specular 
sound diffusing surfaces. Other strategy is to use membranes or plates instead of quarter-wavelength 
resonators or Helmholtz resonators. In a plate, or a membrane, the resonance in the plate arises due to the 
transversally propagating waves in the elastic solid. Therefore, the resonance can be tuned by several 
mechanisms. First, it can be tuned by modifying the elastic parameters of the elastic solid (in the case of 
plates) or the tension (in the case of the membranes). However, this process can be cumbersome for practical 
reasons. Other approach is to modify the mass density of a membrane by adding a localized mass [7], but, 
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again, the fine required tuning becomes difficult in a practical implementation. In this work, we propose to 
use a panel composed of a square array of resonating thin plates, each one backed by a cavity, as shown in 
Fig. 1. By tuning the depth of the backing cavity, it is possible to tune the resonance frequency of each cell 
using the same plate. In this way, we can engineer the metasurface in a robust way, resulting in thin and 
easy-to-build sound diffusers.   

 
Figure 1 –Scheme of a sound diffuser based on elastic plates. 

2 Methods 
We model the unit cell as a clamped rectangular elastic plate backed by a cavity, as shown in Fig. 1. We 
follow the model presented by Sun and Jan [8]. For a square clamped plate of side , the orthogonal modal 
decomposition of the displacement components of the plate given by, ,  gives  

  (1) 

with the functions  and  given by 

  (2) 

and where  and  satisfy 
 , (3) 
that can be solved numerically, e.g., by using Muller’s method [9]. Then, we can define the following 
integrals  
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  (4) 

These integrals can be numerically integrated using the Simpson’s rule. Finally, the impedance of the plate is 
defined as 

  (5) 

where  is the density, and  is the thickness of the plate, and its bending stiffness (or flexural rigidity), , 
is given by 

 , (6) 

the wavenumber in the plate follows the dispersion relation 

  (7) 

and  and , the Young's modulus and Poisson's ratio of the material plate, respectively. The resonance 
frequencies of the plate without the backing are given by    

  (8) 

It is worth to mention that a low-frequency approximation of the elastic plate can be obtained using a lumped 
model. The effective mass and compliance of the plate for the first resonance mode are given by 

  (9) 

 And the impedance of the lumped plate is 

  (10) 

In this case the resonance frequency is given by , so the frequency is . Finally, 
the total impedance at the surface of each cell is given by 

  (11) 

where  is the depth of the cavity and  is the impedance normalized by the surface,  the 
density and  the sound speed of the air. The impedance of the plate can by set to the full model given by 
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Eq. (5) or the lumped model (10). In this case, the resonance frequency can be downshifted deeper in the 
subwavelength regime. Using this impedance, the reflection coefficient for each cell, located at in the plane 

 and at , can be calculated as  

 . (12) 

Then, the acoustic field at a point  scattered by the metasurface located at  can 
be approximated by the Rayleigh-Sommerfeld integral as 

  (13) 

where  is the incident pressure field,  is the spatially-dependent reflection coefficient of the 
locally-reacting surface, given by (12), over the surface , and  is the wavenumber in air at an 
angular frequency , and  is the sound speed. In the far field, and in spherical coordinates, , 
using the convention  for the azimuth and  for the elevation, the distance between any 
point and the plane of the metasurface is approximated by  

  (14) 

A second-order Taylor expansion yields 

  (15) 

Introducing the approximation given by (14) in the denominator of (13) and the expansion (15) in the 
exponential of the numerator of (13), respectively, we get the Fraunhofer-Fourier approximation of the 
scattered field as 

  (16) 

where the transversal components of the wavevector are given by 

     and   (17) 

Note the spherical-divergence factor  is usually dropped as it does not contribute to the directivity 
of the scattering in the azimuthal and elevation planes. Equation (16) is essentially a two-dimensional spatial 
Fourier transform of the reflected field and can be calculated efficiently using fast-Fourier transforms. In this 
work, we tune the complex reflection coefficient  along the surface of the structure using elastic 
plates to produce far-field scattering  with is uniform with the azimuthal and elevation angles. 

3 Results 

3.1 The impedance of a rigidly-backed elastic plate 

We start by revisiting the impedance of an elastic plate backed by a cavity. We are interested in thin panels, 
so the quarter wavelength resonance frequency of the cavity is much higher than the resonance of the plate. 
In this regime, the cavity has a great impact on the resonance of the unit cell. The resonance modes are 
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observed at frequencies when the system does not present any reacting behaviors and the imaginary part of 
the impedance is null. Figure 2 (left) shows the imaginary part of the impedance. First, the lumped model 
(blue curve) shows that the imaginary part vanishes at one single point. The cavity alone is shown in black. It 
crosses the cero at much higher frequency, 2000 Hz, corresponding this frequency with its quarter 
wavelength resonance. However, we can see that the imaginary part of the cavity, given by the cotangent 
function, presents two limiting values. In the low frequency limit, the imaginary part of the impedance of the 
cavity presents a very large value, so when combining this impedance in series with the plate, the cavity 
dominates. In this regime, the whole unit cell cannot present any resonance and, therefore, acts as a rigid 
wall. At medium frequencies, we can see that the cavity shifts the resonance of the plate to a higher 
frequency.  
 

 
 

Figure 2. Imaginary part of the impedance of a plate backed by a cavity of 8.55 cm. (right) Phase of the 
reflection coefficient of the unit cell as a function of the length of the cavity and the frequency. The quarter 

wavelength resonance of the cavity is shown in dashed red, and its antiresonance frequency is shown in 
dashed blue. 

 
At this point, is convenient to include in the analysis the full model, as the validity of the lumped model is 
restricted for frequencies up to the first resonance. We might note that the full model includes both, 
resonances, at the zero-crossings in Fig. 2, (left), and antiresonances, shown as discontinuities in Fig. 2 (left). 
Therefore, when combining in series a plate with a cavity, the resonance frequency cannot be shifted beyond 
the antiresonance because the latter introduces a discontinuity on the imaginary part of the impedance and 
the total impedance around this frequency range is dominated by the antiresonance. This effect is revealed to 
be critical when designing metasurfaces based on elastic plates and membranes, as we will see below. 
Taking the full model into account, we can observe that other modes are present, corresponding each one to 
the normal modes of the elastic vibrating plate. Finally, in the high frequency regime, the imaginary part of 
the impedance of the cavity starts to diverge, because of its antiresonance. This corresponds to the half-
wavelength resonance of the cavity. Here, the cavity acts as a rigid element. In this regime, the cavity 
dominates the total impedance, the summation of both elements results in a shifting of the plate resonances 
to lower frequencies, but this shift is restricted to their nearest antiresonance. This process results in 
narrowband resonances at high frequency. In summary, while the resonance of the plate can be tuned in 
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some degree just using a rigidly-backed cavity, at the antiresonance frequencies the whole unit cell acts as a 
reflecting panel, and these frequencies remain fixed by the plate (or a membrane).  
 
The phase of the reflection coefficient as a function of the length of the cavity is shown in Fig. 2 (right). We 
can see that at the resonance of the unit cell, a phase jump is produced, . Using a sub-
wavelength depth cavity, the first resonance frequency is shifted at frequencies higher than the resonance of 
the plate (dashed white). Therefore, the first and the superior resonances can be tuned by the length of the 
cavity. We might notice that there are frequency ranges where no resonance is present. This is caused by the 
antiresonances of the plate. At these frequencies, the whole unit cell acts as a rigid boundary and other 
mechanism must be included to tune the reflection coefficient at these frequencies. These include changing 
the material of the membrane, its thickness, its surface or adding mass. 

3.2 Tuning the reflection coefficient 

Using the degree of freedom of the backing cavity, we can tune the reflection coefficient. For example, que 
can tune the reflection coefficient of a plate-metadiffuser of maximum thickness of L = 2 cm, to that of a 
quadratic residue diffuser of L = 16 cm, both designed to work at 1200 Hz. The resulting phase is shown in 
Fig. 3, where it can be observed a good agreement between both distributions. As the reflection coefficient 
along the surface is the same in both cases, it is not surprising that the far field scattering, shown in Fig.4 is 
similar. If compared with a flat reflector, we can see that both structures scatter waves in multiple directions, 
following a similar and uniform pattern. Therefore, both structures present a similar normalized diffusion 
coefficient, 0.67 for the QRD and 0.69 for the plate metadiffuser. The main difference is that the thickness of 
the metadiffuser is about 10 times thinner.   
 

 
Figure 3 – (left) phase of the reflection coefficient for a plate-metadiffuser of L= 2 cm, at 1200 Hz, tuned to 
be the same than the phase of a quadratic residue diffusers of L = 16 cm, designed for the same frequency.  
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Figure 4 – (left) Resulting far-field scattering of the plate-metadiffuser, (center) QRD, and (right) rigid panel.  

 

4 Conclusions 
Using plate resonators panels with broadband response can be optimized. However, as the bandwidth of the 
resonance is narrow, the diffusion coefficient should present a band-limited response. Other drawback is that, 
using plates, the absorption coefficient cannot be tuned as easily as using Helmholtz resonators. In addition, 
practical implementation of membrane and plate resonators usually differs from modelling. We expect that 
this effect will result in a performance decrease of optimized panels in realistic situations. However, other 
topologies can be explored to mitigate these factors. For example, by locating the plates at the middle of the 
cavity the high-frequency response can be enhanced. On the other hand, using several thicknesses for the 
plates will eliminate the rigid behaviour of the panel at the antiresonances. This works opens new paths to 
design shallow panels to control the scattering of acoustic waves where space is limited, such as designing 
sound diffusers for critical listening rooms, or designing thin diffusing metasurfaces for underwater 
applications.  
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