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Abstract
We apply the theory of Herglotz functions to derive fundamental constraints on broadband passive acoustic
treatments in a unidimensional scattering problem. This reveals that the weighted integral of the reflection,
transmission, or absorption spectrum is related to the total length of the treatment as well as to the static limit
of its acoustic response. Since the static limit could be well predicted with a priori estimation on the structural
filling ratio, this analysis makes it possible to evaluate the inherent constraints on the required minimum length
of a passive acoustic treatment before any specific design.
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1 Introduction

Passivity is an inherent property satisfied by many physical systems. In particular, for a continuous, causal,
linear, and time-translational invariant system, passivity leads to sum rules and imposes fundamental constraints
on the system, which relate the broadband response to low/high frequency behaviours. In order to derive these
constraints, the Kramers-Kronig (K-K) relations [1, 2] and the Bode gain-phase relation (or modified K-K
relation) [3, 4] are commonly adopted. Examples include the derivations of fundamental constraints or physical
limitations on the electrical networks [5, 6], the absorbers of electromagnetic wave [7] or acoustic wave [8],
the feedback control systems and filters [9], Compton scattering and vector bosons in nuclear physics [10], etc.
Notice that, some further assumptions are usually made on the considered systems [11, 12], e.g., the response
function is restricted to be rational so that the Cauchy integral formula is applicable [12]. To consider more
general cases, the method developed by Bernland et al. [12] could be employed. This method is based on the
theory of Herglotz function [11, 13] and has contributed to a wide variety of applications in electromagnetism
[14, 15, 16].

Passive treatments are also widely used to achieve various functionalities in the applications of acoustic
metamaterials, e.g., in a scattering problem, the design of broadband absorbers [17, 18, 19], silencers [20, 21],
meta-diffusers [22], etc., and see [23, 24, 25] with the references therein for other applications. It could be
deduced that, in many cases the concerned acoustic response cannot be expressed by a rational function (e.g.,
the acoustic impedance of a commonly used quarter-wavelength resonator is not a rational function). Thus,
we apply the method of Ref.[12] in acoustics, to analyse the fundamental constraints on passive treatments.
In Sec.2.1, this method as well as the theory of Herglotz functions is briefly introduced. The transfer
matrix modelling of the considered scattering problem is provided in Sec.2.2 and the derived sum rules and
fundamental constraints are discussed for a symmetric reflection problem, anti-symmetric reflection problem,
and symmetric transmission problem in Sec.2.3 to Sec.2.5, respectively. Conclusions are drawn in Sec.3.
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2 Fundamental constraints for a 1D scattering problem

2.1. Sum rules and fundamental constraints for a passive system
For a continuous, causal, linear, and time-translational invariant system, the output of the system is expressed

as a convolution between the input and the response. After the time-domain Fourier transform, the convolution
reduces to a product in the frequency domain and the response function is defined by the ratio between the
output and input spectra. When the system is passive, the response function should construct a positive-real
function [16]. Specifically, when the surface impedance ζ(ω) is considered, the passivity of the system is
equivalent to Re[ζ(ω)] ≥ 0, which ensures that the acoustic energy transferred into the system would not be
amplified. On the other hand, if we consider the reflection and transmission coefficients, R(ω) and T (ω), in the
scattering problem, the passivity of the system requires that |R(ω)|2+|T (ω)|2 ≤ 1, i.e., − ln[|R(ω)|2+|T (ω)|2] ≥ 0,
or separately, − ln |R(ω)| ≥ 0 and − ln |T (ω)| ≥ 0. These relations imply that the total output energy of the
system should not be greater than the input energy.

The Herglotz function could be directly used to analyse the response of a passive system, since it is closely
related to the positive-real function. With the time dependence of e−iωt, a Herglotz function H(ω) is defined
by a holomorphic function in the upper half complex ω plane, and Im[H(ω)] ≥ 0 for Im(ω) > 0 [12, 13].
It follows that in the aforementioned passive acoustic systems, the Herglotz functions H1(ω) = iζ(ω) and
H2(ω) = −i log[R(ω)·B(ω)] (or −i log[T (ω)·B(ω)] ) could be introduced, where log(·) is the complex logarithm,
B(ω) is the Blaschke product [7, 12] to remove the zeros of R(ω) or T (ω) in the upper half plane. With the
asymptotic series expansions of the Herglotz functions at both the static and dynamic limits, a series of integral
identities or sum rules could be derived [12, 15]. These sum rules reveal fundamental constraints on the passive
system.

2.2. Transfer matrix modelling

Figure 1: The 1D scattering problem of a plane wave by a composite material: (a) Symmetric reflection
problem; (b) Anti-symmetric reflection problem; (c) Symmetric transmission problem.

As shown in Fig.1, we consider the one-dimensional (1D) scattering problem in which a plane incident
wave is scattered by a composite material with thickness L. It is assumed that the material is composed by
subwavelength structures, e.g., tubes, cavities etc., and the medium of the acoustic wave is air in the entire
system. The losses of the system are induced by viscothermal boundary layers near the no-slip and isothermal
boundaries. In the case that the acoustic performance of the system is symmetric in the axial direction, the
composite material could be modelled as an equivalent fluid-like layer with frequency-dependent effective
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parameters. Under the above assumptions, the transfer matrix of the system is written by P(L)

V(L)

 = T ·

 P(0)

V(0)

 =
 t11 t12

t21 t22

 ·
 P(0)

V(0)

 , (1)

where P = p/K0, V = v/c0 are the dimensionless acoustic pressure and particle velocity with K0 = ρ0c2
0

referring to the bulk modulus of the air, the elements of the matrix are t11 = t22 = cos(keL), t12 = i ρece
ρ0c0

sin(keL)
and t21 = iρ0c0

ρece
sin(keL). The equivalent density ρe, sound speed ce and wavenumber ke depend on the frequency,

whose static/dynamic limits could be evaluated under the assumptions we have made for the material [26]. In
either a reflection problem or a transmission problem, the acoustic response of the material could be expressed
by the elements of the transfer matrix.

2.3. Symmetric reflection problem
As shown in Fig.1(a), consider a symmetric reflection problem in which a rigid boundary is set at one end of

the material (x = 0). The surface impedance and reflection coefficient at x = L are given by ζ(ω) = −t21/t11 and
R(ω) = (t11 + t21)/(t11 − t21). With the help of the Herglotz functions H1 and H2, the fundamental constraints
are derived for ζ and R, i.e.,

c0

2π
Ke(0)

K0

∫ ∞
0

1
ω2 Re[ζ(ω)]dω = L , (2)

and
c0

π

Ke(0)
K0

∣∣∣∣∣∫ ∞
0

1
ω2 ln |R(ω)| dω

∣∣∣∣∣ ≤ L , (3)

respectively, where Ke(0) is the static limit of the effective bulk modulus Ke = ρec2
e . Generally, Ke(0)/K0 is

evaluated by 1/(σγ), where γ = 1.4 is the adiabatic index of the air and σ is the filling ratio of the composite
material. Note that Eq.(3) is in accordance with the results given in Refs.[8, 17], which could be rearranged to
a constraint on the absorption spectrum by using α(ω) = 1 − |R(ω)|2.

2.4. Anti-symmetric reflection problem
In the anti-symmetric reflection problem, where a pressure-release boundary is satisfied at x = 0 (Fig.1(b)),

the concerned response functions are given by ζ(ω) = −t12/t22 and R(ω) = (t12 + t22)/(t12 − t22). When we
consider the case that the material has a filling ratio σ close to 100%, the dimensionless quantity Lν0/(σc0D2)
which dominates the static/dynamic limits of ζ and R, is guaranteed to be much less than unity in common cases,
with ν0 the kinematic viscosity of air and D a typical length scale of the cross-section of the sub-wavelength
structures used to compose the material. It follows that

c0

2π
ρ0

Re[ρe(0)]

∫ ∞
0

1
ω2 Re[ζ(ω)]dω = L , (4)

and
c0

π

ρ0

Re[ρe(0)]

∣∣∣∣∣∫ ∞
0

1
ω2 ln |R(ω)| dω

∣∣∣∣∣ ≤ L . (5)

Note that, ρe(0) depends on the cross-section geometry for each components and Re[ρe(0)]/ρ0 generally varies
from 1.2/σ to 1.44/σ (see, p.64 of Ref.[26]). Similarly to the previous case, the inequality on |R(ω)| provides
a constraint on α(ω).

2.5. Symmetric transmission problem
In the symmetric transmission problem (Fig.1(c)), it is found that the static-limit sum rules are available

merely for the transmission coefficient T (ω) = 2eik0L/(t11 − t12 − t21 + t22), provided that Lν0/(σc0D2) ≪ 1.
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These sum rules are given by

2c0

π

1
K0

Ke(0)
+

Re[ρe(0)]
ρ0

− 2

∫ ∞
0

1
ω2 Im

[
i
1 − T (ω)
1 + T (ω)

]
dω = L , (6)

and
4c0

π

1
K0

Ke(0)
+

Re[ρe(0)]
ρ0

− 2

∣∣∣∣∣∫ ∞
0

1
ω2 ln |T (ω)| dω

∣∣∣∣∣ ≤ L . (7)

Note that in the above identity (Eq.(6)), a bilinear transformation (given in p.131 of Ref.[27]) is used to construct
a Herglotz function from T (ω). In this case the integrand does not refer to a surface impedance of the system.
On the contrary, the inequality (Eq.(7)) could be used to evaluate bounds for the transmission loss as well as
the absorption spectrum. In order to derive the latter, the relation 1−α(ω) = |T (ω)|2 + |R(ω)|2 ≥ |T (ω)|2 should
be adopted.

3 Conclusion

In conclusion, we apply the theory of Herglotz function to derive sum rules for a 1D scattering problem in
acoustic metamaterial applications, which relates the weighted integral of a concerned response function to the
total length as well as the static limits of the equivalent parameters of the material. The static limits could be
well predicted with a priori estimation on the structural filling ratio. This analysis makes it possible to evaluate
the inherent constraints on the required total length of a passive acoustic treatment before any specific design.
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