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Abstract 

Pile driving operation generates considerable disturbance to nearby buildings in terms of noise and vibrations. 

This study is focused on ground-borne vibrations, which are difficult to predict and mitigate. Several factors 

may influence the propagation pattern and intensity, which may even cause structural damage in extreme cases. 

In this sense, the correct prediction of the level of the vibrations prior to the pile driving operation is extremely 

important. In this work, an axisymmetric finite element model is implemented in time-domain, considering an 

efficient explicit/semi-explicit time marching procedure. The soil is modelled as a nonlinear elastic model, 

according to a classical hyperbolic model available in the literature. A numerical application is carried out and 

the obtained results are analyzed and compared to previous numerical and experimental studies. 

Keywords: pile driving, ground-borne vibrations, finite element method, nonlinear analyses, time domain 

simulations. 

1 Introduction 

Linear analysis of ground-borne vibrations induced by pile driving are reasonably suitable when low 

strains are developed in the soil [1,2]. However, this is not the case when real scenarios are analyzed. In this 

type of operation, a large amount of energy is transmitted through the soil and considerable strains occur in 

the vicinity of the pile. As a consequence, the developed strains in this restricted area surpass the linear elastic 

range. In this work, these vibrations are studied considering a nonlinear behavior based on a hyperbolic model. 

The classical hyperbolic model proposed by Hardin and Drnevich [3] is employed and compared to previous 

numerical studies and field measurements available in the literature [1]. The finite element method (FEM) 

[4,5], a widely employed numerical tool, is adopted considering axisymmetric formulation for the 

discretization of the soil and pile, and the resulting equation of motion is solved in the time domain.  

Time domain simulations stand as an efficient approach to deal with wave propagation problems. In the 

case of pile driving, the soil and site conditions may be simulated considering different geometric and physical 

properties and, for this reason, it presents technical advantages when compared to classical energy-based 

relations [6-8]. As it is well stablished, when implicit [9-10] methods are employed in nonlinear analyses, an 

iterative process takes place within each time step, which considerably increases the computational costs. Here, 

a semi-explicit/explicit time marching procedure proposed by Soares [11] is applied. The crucial advantage of 

this method for the present simulation is that local implicit subdomains may be applied without the need of 

iterative processes. Thus, implicit subdomains may be generated in restricted areas of the domain and, 

therefore, the problem may be partially solved as implicit and partially as explicit, considerably diminishing 

the computational efforts of the solution procedure. 
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2 Governing equations and time integration scheme 

Considering the time domain FEM formulation, the equation of motion for a nonlinear system may be 

given by [12]: 
 

  𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐏(𝑡) = 𝐅(𝑡), (1) 

 

where 𝐌 and 𝐂 are the mass and damping matrices, respectively; �̈�(𝑡) and �̇�(𝑡) are the accelerations and 

velocities vectors, respectively; and 𝐅(𝑡) is the external forces vector. 𝐏(𝑡) is the internal forces vector and it 

is defined as function of 𝐔(𝑡), where 𝐔(𝑡) is the displacement vector. In linear analyses, this vector may be 

defined as: 
 

  𝐏(𝑡) = 𝐊𝐔(𝑡), (2) 

 

where 𝐊 stands for the stifness matrix. In this work, since explicit nonlinear analyses are regarded, the 

internal forces vector is computed at each time step according to the previously obtained response. The 

initial conditions of this system are given by: 𝐔(0) = 𝐔0 and  �̇�(0) = �̇�0 (𝐔0 stands for the initial 

displacement vector and �̇�0 stands for the initial velocity vector). The equation of motion (Equation 1) is 

solved in the time domain taking into account the semi-explicit/explicit time marching procedure proposed by 

Soares [11]. This time integration scheme is defined with the same approximations to the time derivatives of 

the displacement field as in the standard Central Difference Method (CDM), which are given by: 
 

  �̈�𝑛 =
1

Δt2
(𝐔𝑛+1 − 2𝐔𝑛 + 𝐔𝑛−1), (3) 

  �̇�𝑛 =
1

2Δ𝑡 
(𝐔𝑛+1 − 𝐔𝑛−1), (4) 

 

where the superscript “𝑛” indicates the time step of the variable and 𝑡 = 𝑛Δ𝑡. The recursive relation proposed 

by Soares [11] is given by: 
 

  (�̅�𝑒 +
1

2
Δ𝑡𝐂𝑒) 𝐔𝑒

𝑛+1 = Δ𝑡2(𝐅𝑒
𝑛 − 𝐏𝑒

𝑛) + �̅�𝑒(2𝐔𝑒
𝑛 − 𝐔𝑒

𝑛−1) +
1

2
Δ𝑡𝐂𝑒𝐔𝑒

𝑛−1, (5) 

 

where the subscript “𝑒” indicates that the variable is locally defined (i.e., it is defined at an element level). �̅�𝑒 

stands for the modified local matrix, and the standard Central Difference Method is reproduced when �̅�𝑒 =
𝐌𝑒 is considered. This modified matrix is defined in order to ensure the stability of the method. As it is well 

known, CDM is a classical conditionally stable explicit method, with critical sampling frequency Ω𝑐 = 2. 

Thus, the method proposed by Soares [11] is defined so that the mass matrix is locally modified whenever it 

is necessary (i.e., when an explicit element is unstable, its local mass matrix is modified and an implicit stable 

element is then generated). The modified local matrix is defined as: 
 

  �̅�𝑒 = 𝐌𝑒 + Δ𝑡2𝑎𝑒𝐊𝑒, (6) 

 

where 𝑎𝑒 is a local parameter that defines the explicit and implicit subdomains. Thus, the maximum critical 

sampling frequency of the element is evaluated and, if it is greater than 2 (unstable element), a proper non-null 

value is defined to the parameter 𝑎𝑒 and stability is ensured. This parameter is given by: 
 

  if Ω𝑒
𝑚𝑎𝑥 ≤ 2, 𝑎𝑒 = 0, (7) 

  if Ω𝑒
𝑚𝑎𝑥 > 2, 𝑎𝑒 =

1

4
tanh (

1

4
Ω𝑒

𝑚𝑎𝑥), (8) 
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where Ω𝑒
𝑚𝑎𝑥 stands for the maximum sampling frequency of the element. Hence, the classical explicit CDM 

is reproduced whenever the element is stable (Ω𝑒
𝑚𝑎𝑥 ≤ 2) and a novel implicit method arises when the element 

is unstable (Ω𝑒
𝑚𝑎𝑥 > 2). For simplicity, in this work, the parameter 𝑎𝑒 regarding the generation of implicit 

subdomains is considered as: 
 

  if Ω𝑒
𝑚𝑎𝑥 > 2, 𝑎𝑒 =

1

4
, (9) 

 

which allows to enhance the stability of the model. The variable Ω𝑒
𝑚𝑎𝑥 is given by: 

 

  Ω𝑒
𝑚𝑎𝑥 = 𝜔𝑒

𝑚𝑎𝑥Δ𝑡, (10) 

 

where 𝜔𝑒 is the maximum natural frequency of the element, which is calculated as the square root of the 

maximum eigenvalue of the locally defined generalized eigenvalue problem [4,5]: 
 

  𝐊𝑒𝜙𝑒 = 𝜔𝑒
2𝐌𝑒𝜙𝑒. (11) 

 

The innovative time integration scheme proposed by Soares [11] is simple to implement and entirely 

automated, since the user must only define the time step of the analysis. Thus, explicit and implicit subdomains 

are automatically generated according to the geometrical and physical properties of each finite element. For 

further insights regarding this method, see [11]. 

3 Hyperelastic model 

In this work, the classical hyperelastic model proposed by Hardin and Drnevich [3] is adopted. This model 

is simple to implement in numerical analyses and is widely used in soil dynamics. The stress-strain relation of 

this method is presented in Figure 1.  

 

Figure 1 – Stress-strain relation of the Hardin and Drnevich model. 

In terms of the shear modulus reduction factor, the Hardin and Drnevich model is defined as [3]: 
 

  
𝐺𝑠

𝐺0
=

1

1+
𝛾

𝛾𝑟𝑒𝑓

, (12) 

 

where 𝐺𝑠 is the secant shear modulus, 𝐺0 is the initial shear modulus (corresponding to linear elastic behavior), 

𝛾 is the shear strain and 𝛾𝑟𝑒𝑓 is the reference strain. 
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4 Implemented model 

4.1 Model dimensions and properties 

The parametric study published by Masoumi et al. [1] is reproduced here. Three pile penetration depths 

are analyzed: ℎ1 = 2 [𝑚], ℎ2 = 5 [𝑚] and ℎ3 = 10 [𝑚]. The FEM axisymmetric formulation is adopted, 

considering linear triangular elements (3 nodes). A sketch of the implemented model for the penetration depth 

ℎ3 = 10 [𝑚] is presented in Figure 2. 

 

 

Figure 2 – Sketch of the numerical model for the penetration depth ℎ3 = 10 [𝑚] considering axisymmetric 

formulation. 

The model dimensions are: 𝐻𝑠𝑜𝑖𝑙 = 20 [𝑚] (soil depth), 𝐿𝑠𝑜𝑖𝑙 = 40 [𝑚] (soil length). An absorption 

layer is also modelled, with 𝑙𝑑𝑎𝑚𝑝 = 5 [𝑚] to damp out reflections on the boundary of the domain and simulate 

an infinite medium (the material damping formulation is further explained in Section 4.3). A concrete pile with 

circular cross section is adopted with 𝐿𝑝𝑖𝑙𝑒 = 10 [𝑚] (pile length),  𝑑𝑝𝑖𝑙𝑒 = 0.50 [𝑚] (pile diameter), 𝐸𝑝𝑖𝑙𝑒 =

40 𝐺𝑃𝑎 (Young modulus), 𝜈𝑝𝑖𝑙𝑒 = 0.25 [– ] (Poisson ratio) and 𝜌𝑝𝑖𝑙𝑒 = 2500 [𝑘𝑔 𝑚3]⁄  (mass density). The 

pile is modeled as linear elastic and two scenarios are considered for the soil behavior: linear and nonlinear 

elastic. Soil properties for the implemented scenarios are presented in Table 1. The nonlinear property 𝛾𝑟𝑒𝑓 is 

based on “Table 5 – Tests on Leek Creek Silt” presented by Hardin and Drnevich [3]. For the analyzed soil, 

the stress-strain relation and the equivalent linear shear modulus reduction are presented in Figure 3. 

Table 1 – Studied soil scenarios. 

Scenario 1 2 

Soil behavior Linear Nonlinear 

Hyperbolic model - Hardin and Drnevich 

Young modulus 

Shear modulus 

Poison ratio 

Mass density 

Model parameters 

𝐸𝑠𝑜𝑖𝑙 = 80 [𝑀𝑃𝑎] 
𝐺𝑠𝑜𝑖𝑙 = 28.5 𝑀𝑃𝑎] 

𝜈𝑠𝑜𝑖𝑙 = 0.40 [−] 
𝜌𝑠𝑜𝑖𝑙 = 2000 [𝑘𝑔 𝑚3]⁄  

- 

𝐸𝑠𝑜𝑖𝑙 = 80 [𝑀𝑃𝑎] 
𝐺𝑠𝑜𝑖𝑙 = 28.5 [𝑀𝑃𝑎] 

𝜈𝑠𝑜𝑖𝑙 = 0.40 [−] 
𝜌𝑠𝑜𝑖𝑙 = 2000 [𝑘𝑔 𝑚3]⁄  

𝛾𝑟𝑒𝑓 = 1.4 × 10−3 [−] 
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Figure 3 – Soil properties: (a) Stress-strain relation and (b) Shear modulus reduction with strain. 

4.2 Implicit and explicit subdomains decomposition 

The finite element mesh adopted in the numerical application is generated in Gmsh [13]. A mesh 

refinement is considered in order to obtain a better result near the pile, where the nonlinear behavior is expected 

to occur, due to the higher magnitude of the developed strains. A sketch of the mesh refinement for the 

penetration depth ℎ3 = 10 [𝑚] is presented in Figure 4 (the hatched area near the pile is considered with 

elements twice smaller than the rest). 

  

Figure 4 – Sketch of the adopted mesh refinement (hatched area) for the penetration depth ℎ3 = 10 [𝑚]. 

The dimensions ℎ𝑟𝑒𝑓 = 3 [𝑚] (from the pile toe) and 𝑑𝑟𝑒𝑓 = 5 [𝑚] (from the pile axis) for the mesh 

refinement are also adopted for the penetration depths ℎ1 = 2 [𝑚] and ℎ2 = 5 [𝑚]. Thus, the number of 

elements is different according to the penetration depth, as presented in Table 2. 

Table 2 – Number of nodes and elements of the adopted meshes. 

Penetration depth Nodes Elements 

ℎ1 = 2 [𝑚] 7230 14081 

ℎ2 = 5 [𝑚] 7674 14989 

ℎ3 = 10 [𝑚] 7952 15579 
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As previously described in Section 2, the method proposed by Soares [11] automatically generate 

implicit and explicit subdomains according to the properties of the finite element. Hence, the time-step of the 

analysis is selected in a way that the pile and the refined area (see Figure 4) is stablished as an implicit 

subdomain, in order to ensure the stability of the model. For this model properties and dimensions, the critical 

time-step is Δ𝑡𝑐𝑟𝑖𝑡 = 1.78 × 10−5 [𝑠] for a purely explicit analysis and the adopted time step is Δ𝑡 =
2 × 10−4 [𝑠].  

4.3 Material damping approach 

The material damping approach adopted in this work is based on a previous study published by the 

authors [2]. The pile, computed as an implicit subdomain, is considered as Rayleigh damping: 
 

  𝐂 = 𝛼𝑝𝑖𝑙𝑒𝐌 + 𝛽𝑝𝑖𝑙𝑒𝐊, (13) 

 

where 𝛼𝑝𝑖𝑙𝑒 and 𝛽𝑝𝑖𝑙𝑒 are defined as: 
 

  𝛼𝑝𝑖𝑙𝑒 =
2𝜉𝑝𝑖𝑙𝑒𝜔𝑝𝑖𝑙𝑒

𝑖 𝜔𝑝𝑖𝑙𝑒
𝑗

𝜔𝑝𝑖𝑙𝑒
𝑖 +𝜔𝑝𝑖𝑙𝑒

𝑗 , (14) 

  𝛽𝑝𝑖𝑙𝑒 =
2𝜉𝑝𝑖𝑙𝑒

𝜔𝑝𝑖𝑙𝑒
𝑖 +𝜔𝑝𝑖𝑙𝑒

𝑗  (15) 

 

where 𝜔𝑝𝑖𝑙𝑒
𝑖  and 𝜔𝑝𝑖𝑙𝑒

𝑗
 stand for the control frequencies of the Rayleigh damping and 𝜉𝑝𝑖𝑙𝑒 stand for the 

damping ratio of the pile (𝜉𝑝𝑖𝑙𝑒 = 2.5%). These control frequencies are selected as the first and third natural 

frequencies corresponding to axial vibration modes of the pile, which corresponds to 𝜔𝑝𝑖𝑙𝑒
𝑖 = 200 [𝐻𝑧] and 

𝜔𝑝𝑖𝑙𝑒
𝑗

= 600 [𝐻𝑧]. The material damping approach considered for the soil is different for the implicit and 

explicit subdomains. In the implicit domain (refined mesh area) of the soil, the damping matrix is considered 

as non-diagonal Rayleigh damping, given by: 
 

  𝐂 = 𝛼𝑠𝑜𝑖𝑙𝐌 + 𝛽𝑠𝑜𝑖𝑙𝐊, (16) 

 

where 𝛼𝑠𝑜𝑖𝑙 and 𝛽𝑠𝑜𝑖𝑙 are defined as [2]: 
 

  𝛼𝑠𝑜𝑖𝑙 =
2𝜔𝑠𝑜𝑖𝑙

𝑖 𝜔𝑠𝑜𝑖𝑙
𝑗

(𝜔𝑠𝑜𝑖𝑙
𝑗

𝜉𝑠𝑜𝑖𝑙
𝑖 −𝜔𝑠𝑜𝑖𝑙

𝑖 𝜉𝑠𝑜𝑖𝑙
𝑗

)

(𝜔𝑠𝑜𝑖𝑙
𝑗

)
2

−(𝜔𝑠𝑜𝑖𝑙
𝑖 )

2 , (17) 

 

  𝛽𝑠𝑜𝑖𝑙 =
2(𝜔𝑠𝑜𝑖𝑙

𝑗
𝜉𝑠𝑜𝑖𝑙

𝑗
−𝜔𝑠𝑜𝑖𝑙

𝑖 𝜉𝑠𝑜𝑖𝑙
𝑖 )

(𝜔𝑠𝑜𝑖𝑙
𝑗

)
2

−(𝜔𝑠𝑜𝑖𝑙
𝑖 )

2 , (18) 

 

where 𝜔𝑠𝑜𝑖𝑙
𝑖  and 𝜔𝑠𝑜𝑖𝑙

𝑗
 stand for the control frequencies of the Rayleigh damping and 𝜉𝑠𝑜𝑖𝑙

𝑖  and 𝜉𝑠𝑜𝑖𝑙
𝑗

 stand for 

the selected damping ratios. In this work, it is adopted 𝜔𝑠𝑜𝑖𝑙
𝑖 = 10 [𝐻𝑧], 𝜔𝑠𝑜𝑖𝑙

𝑗
= 200 [𝐻𝑧], 𝜉𝑠𝑜𝑖𝑙

𝑖 = 1% and 

𝜉𝑠𝑜𝑖𝑙
𝑗

= 2% (properties extracted from [2]). For the explicit subdomain, the modified local mass proportional 

damping proposed by [2] is considered: 
 

  𝐂𝑒 = (𝛼𝑠𝑜𝑖𝑙 + 𝛽𝑠𝑜𝑖𝑙𝜔𝑒
𝑚𝑎𝑥 (

𝜔𝑠𝑜𝑖𝑙
𝑖 𝜔𝑠𝑜𝑖𝑙

𝑗

𝜔𝑠𝑜𝑖𝑙
𝑖 +𝜔𝑠𝑜𝑖𝑙

𝑗 )) 𝐌𝑒, (19) 

 

where 𝛼𝑠𝑜𝑖𝑙, 𝛽𝑠𝑜𝑖𝑙, 𝜔𝑠𝑜𝑖𝑙
𝑖  and 𝜔𝑠𝑜𝑖𝑙

𝑗
 are the same as described in Equations 17 and 18; and 𝜔𝑒

𝑚𝑎𝑥 stands for the 

maximum natural frequency of the element, defined in Equation 11. For the damping layer, the material 
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damping is computed taking into account the Equation 19 and considering an exponential increasing of the 

damping ratio up to its exterior boundary. In addition, no numerical damping is adopted in this work, since 

stiffness proportional damping is considered and this approach presents strong dissipation of the higher 

frequencies. 

5 Numerical application 

5.1 Hammer impact force 

Ground-borne vibrations induced by impact pile driving are studied here. In order to obtain the impact force, 

the hammer is considered according to a two degrees of freedom model proposed by Deeks and Randolph [14]. 

The hammer properties are extracted from Masoumi [1] and two impact scenarios are analyzed: a lower impact 

force with transmitted energy of approximately 𝐸𝑡
𝑙𝑜𝑤 = 3.4 [𝑘𝐽] and a upper impact force with approximately 

𝐸𝑡
𝑢𝑝

= 19.2 [𝑘𝐽]. Thus, for each scenario, a single blow of a BSP-357 hammer impact force (Figure 5) is 

applied in the center of the pile head. 

 

Figure 6 – Lower impact force: (a) time domain and (b) frequency domain. 

5.2 Results and discussion 

Figure 7 presents snapshots for the wave propagation (norm of the displacement), for the penetration 

depth ℎ3 = 10 [𝑚] and for the linear and nonlinear analyses, considering the upper impact force. Here, the 

damping layers are not depicted in the snapshots, but it may be observed that they are working as expected 

(i.e., no spurious reflections are observed). The separation of different types of waves generated are also 

observed, since surface waves and body waves present slightly different propagation velocities. In addition, it 

is also observed the effect of the nonlinearity in the propagation pattern. The snapshots related to the linear 

behavior of the soil (Figure 7(a)) present higher energy than those related to the nonlinear model (Figure 7(b)). 

Time history and frequency content for a surface point located at a radial distance 𝑟 = 5 [𝑚] from the 

center of the pile, considering a lower impact force, is presented in Figure 8. The effect of the nonlinear 

behavior of the soil is smaller when lower impact energies are applied. In fact, a smaller amount of energy 

induces a smaller magnitude of the developed strains which leads to a smoother nonlinearity. Still, the 

degradation of the shear modulus due to the nonlinear behavior may be observed in the propagation velocity 

of the surface waves, even for the lower impact force. As one may observe, results obtained in the nonlinear 

analysis present a latter arrival of the wave front. 
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Figure 7 – Snapshots of the norm of the displacement: (a) linear and (b) nonlinear. 

 

Figure 8 – Vertical velocity for a surface point located at radial distance 𝑟 = 5 [𝑚]: (a) time domain and (b) 

frequency domain for penetration depths ℎ1 = 2 [𝑚] (dotted line), ℎ2 = 5 [𝑚] (dashed line) and ℎ3 =
10 [𝑚] (solid line). 
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In Figure 9 the peak particle envelope for linear and nonlinear analyses are presented. The upper limit 

of the envelope corresponds to the upper impact force (𝐸𝑡
𝑢𝑝

= 19.2 [𝑘𝐽]) for the penetration depth ℎ1 = 2 [𝑚]. 

On the other hand, the lower limit of this envelope corresponds to the lower impact force (𝐸𝑡
𝑙𝑜𝑤 = 3.4 [𝑘𝐽]) 

for the penetration depth ℎ3 = 10 [𝑚]. Here, the effect of the nonlinearity of the soil is clearly observed. For 

the case of nonlinear analysis, a considerable amount of energy is internally dissipated. A substantial difference 

is shown for higher impact forces since then the developed strains reach higher magnitudes, resulting in a 

stronger nonlinear behavior. 

 

Figure 9 – Peak particle velocity envelope. 

6 Conclusions 

In this work a nonlinear numerical model is developed taking into account an effective time marching 

procedure. The adopted scheme allowed to implement implicit and explicit subdomains in the same analysis, 

without the need of iterative processes for solving the equation of motion. The obtained results are compared 

to previous numerical and field measurements, which are available in the literature. In order to obtain a 

comparable reference, a linear model with the same characteristics is also considered. The results demonstrate 

that a considerable amount of energy is dissipated due to the nonlinear behavior of the soil. In fact, pile driving 

operation induces significant strains in the vicinity of the pile and the adoption of a linear elastic constitutive 

behavior is not feasible when higher impact energy is considered. In addition, the results showed that the 

greater the impact force, the more energy is dissipated due to the nonlinearity behavior. Finally, important 

aspects of the wave propagation are properly observed, such as the influence of the pile penetration depth and 

the separation between different types of waves generated during the pile driving operation.  
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