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ABSTRACT 
The Portuguese guitar is a pear-shaped instrument with twelve metal strings (six courses), 
descendant from the renaissance European cittern. This instrument is closely associated with 
the Portuguese traditional music called “Fado” but it has recently started to play a considerable 
role among urban Portuguese musicians. Unlike common guitars, this guitar has a bent 
soundboard (arched top) with a bridge somewhat similar, although smaller in size, to the bridge 
of a violin. Based on our recently developed physical model of the Portuguese guitar, the 
present paper introduces a nonlinear formulation for the string dynamics in order to reproduce 
some musically significant effects obtained with real-life instruments. Nonlinear string vibrations 
are described by the Kirchoff-Carrier equations while the instrument body is idealized by a FEM 
model of the top plate of a typical Portuguese guitar. 
 
The coupling of the strings to the structural modes of the instrument body is ensured by the 
bridge action modeled through a simple geometrical rationale. Emphasis here is on illustrating 
the range of phenomena induced by the nonlinear behaviour of the strings and asserting the 
correct behaviour of our computational modal-based model. 
 
1 Introduction 
Although recent models for string instruments embody many aspects of complex nature such as 
the interaction between the excitation, the strings, the soundboard and the surrounding air, one 
still debatable issue is the origin of the polarization change commonly observed on musical 
strings under transient excitations. If the non-planar dynamics naturally raises fundamental 
questions regarding the behaviour of a stretched string, it has also significant implications for 
the sound produced by string instruments because both polarizations radiate sound. For 
musical instruments such as the piano and some type of guitars including the Portuguese 
guitar, an obvious candidate for the source of interaction is the bridge action which affects the 
motions of the strings attached to it by coupling the body vibrations through some rotation. In a 
more general context, many theoretical and experimental investigations of the free vibrating 
string have attested that mode-coupling effect arises from nonlinear geometrical effects [1–3]. 
However, other physical factors can also be pointed as discussed in a paper by Elliott [4], 
namely the nature of the end conditions and the nonuniformity in string material, but their effects 
are rather difficult to quantify reliably. Apart from its influence on the string polarization, the 
nonlinearity is also of interest from the musical point of view as it leads to audible significant 
effects. 
 
This certainly explains the recent increasing interest in modelling large-amplitude string 
vibrations for sound synthesis purpose [5–8]. In particular, the intrinsic nonlinearity leads to the 
spectral changes observed for different amplitudes of excitation, to the characteristic pitch glide 
effect as well as to some beats phenomena in the sound produced [9]. 
 
In pursuit of the goal of modeling the Portuguese guitar by physical-based methods, we now relax the 
linearity assumption for the string behaviour used in [10] and introduce, in this paper, a nonlinear 
formulation for the strings dynamics. Physically, it consists in accounting for the local changes in string 
tension which inevitably occur for large amplitude vibrations.  This  excites  the longitudinal motion of the 



string and in turn couples the two perpendicular transverse string motions. By including this mode-
coupling, we therefore expect the model to be capable of achieving more detailed simulations and
producing more realisitic synthetic sounds. The other latent objective of this work is to discuss various
source mechanisms for the string mode-coupling effect, in particular by comparing the influence of
the geometrical nonlinearity of the string with the bridge action. Indeed, in [10], we have presented
numerical simulations which include twelve strings, an idealized guitar body and a bridge simply
modelled through geometrical rationale. The results showed that the bridge action does affect the
strings motions but the main conlusion is that its influence remains marginal.
On the technical ground, there is a wide variety of possible approaches to model nonlinear string
vibrations according to the level of refinements retained for the transverse/longitudinal mode coupling
- see [11] for a detailed discussion. The Kirchoff-Carrier string model which is used in this work is
particularly attractive for its simplicity when compared to other approximate models stemming from
the “geometrically exact” model for vibrating strings, see [5, 8, 11, 12]. This model does not describe
precisely the dynamics of the longidutinal motion. Instead, it regards its effects on the transverse
string motions as coming from quasi-static tension variations originated by the net increase in string
length due to the transverse motions. As discussed in Sec. 3.2, this clearly limits the validity of the
model but from the numerical point of view, it is more convenient than other techniques stemming
from the exact formulation which require lengthy computations with thousands of coupling terms to
calculate at each time step. As a consequence, this model has been used in many studies dealing
with sound synthesis of string instruments, but to our best knowledge, none of them concerns the full
modeling of a real instrument as done in this work.
In this paper, we first remind the essential ingredients of our linear modeling of the Portuguese guitar
and then present the governing equations for large-amplitude string motions. Some aspects of the
numerical implementation are discussed and, finally, preliminary results are presented to highlight the
range of phenomena.

2 Presentation of the developed Portuguese guitar model

Figure 1: António Chainho playing the Lisbon Portuguese Guitar.

The Portuguese guitar is a plucked string instrument with twelve metal strings, descendant from
the renaissance European cittern. A detailed structure and acoustical analysis of the Portuguese
guitar can be found in [13] but briefly, it has an arched soundboard, with a round soundhole and a
specific violin-like floating bridge. The physical model presented here has been developed in [10] and
it describes the main interaction involved in music performance. It includes the coupled dynamics of
twelve strings supported by a bridge and an idealized instrument body described through the modal
parameters of the top-plate of a real instrument stemming from FEM modal computation, with further
simple models for the string/fret interaction and the pluck excitation. The model is entirely based on



linear assumptions, for both the displacements and the interactions, and the bridge action is simply
described by assuming a quasi-static response of its dynamics.

String dynamics The string model includes both polarisation, normal and parallel to the
soundboard, and here concerns relatively small-amplitude vibrations only. We consider a set of
s = 1, . . . , S perfectly flexible strings of total length L (from the atadilho, a small tailpiece at the
end of the body of the instrument, to the neck) and density ρs, stretched to an axial tension T s

0 . The
strings are rigidily fixed at both ends and stretched over the bridge, so that their natural frequencies
are lower than the sounding frequencies defined by the active length of the string, i.e the distance
between the bridge and the neck. The linear behaviour of the vibrating string is classically governed
by the 1D-wave equation, for which a modal discretization leads to the set of ODEs:

mys
n q̈ ys

n (t) + c ysn q̇ ys
n (t) + kysn q

ys
n (t) = Fys

n (t) (1a)
mzs

n q̈ zs
n (t) + c zsn q̇ zs

n (t) + kzsn q
zs
n (t) = Fzs
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Here, the time-dependent terms q ys
n (t) and q zs

n (t) are the modal amplitudes of the transverse string
motions in the directions parallel and normal to the soundboard, so that the physical string motions in
the Ys(x, t) and Zs(x, t) directions can be computed by modal superposition as:
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n (t)φ ys

n (x) , Zs(x, t) =
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where φ ys
n (x) = φ zs

n (x) = sin(nπx/L) are the transverse mode shapes of the string in the two
polarization planes, Ns being the size of each string modal basis. The other modal parameters are the
modal mass, modal stiffness, modal damping value and circular modal frequency, given respectively
by:
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where Xs stands either for the Y and Z polarizations of string s. The forcing terms in Eqs. (1) stem
from the projection of the external force f(x, t) on each mode shape and is computed generically as

FXs
n (t) =

∫ L

0

f(x, t)φXs
n (x)dx , (4)

As described in the following, the external force field includes the local effects of (a) the finger/string
interaction during the pluck, (b) the stopping fret when the musician presses the string on the
fingerboard, and (c) the body vibration coupled at the bridge.

String/finger excitation The string/finger interaction is modeled very simply using a spring/dashpot
model. The idea is to attach the finger to the string until the instant of release. The plucking action of
the player during the sticking phase is therefore expressed in terms of two forces as:

F e
Y(t)=−Ke

[
Y(xes, t)−Y e(t)

]
−Ce

[
Ẏ(xes, t)−Ẏ e(t)

]
(5a)

F e
Z(t)=−Ke

[
Z(xes, t)−Ze(t)

]
−Ce

[
Ż(xes, t)−Że(t)

]
(5b)

where F e
Y (t) and F e

Z(t) are the forces interactions in the planes parallel and normal with respect
to the soundboard, Y (xes, t) and Z(xes, t) are the string displacements in the two directions at the
excitation location xes, Ẏ (xes, t) and Ż(xes, t) being the corresponding velocities, Y e(t) and Ze(t) are
the finger displacements in the two directions at the excitation location, with Ke and Ce the stiffness
and damping coupling coefficients between the finger and the strings.



String/fret interaction In order to control the playing frequency, the musician presses the strings
against the fingerboard with its left-hand fingers, which eventually prevents any string motion at the
fret location, and thus shortens the active length of the vibrating string. As for the string/finger
coupling, the interaction force exerted by the fret on the string at the fret location xfs is modelled
by a penalty formulation, using two suitable coupling constants Kf and Cf and imposing a near-zero
string displacement at xfs , according to:

F f
Y (t) = −KfY (xfs , t)− Cf Ẏ (xfs , t) (6a)

F f
Z(t) = −KfZ(x

f
s , t)− Cf Ż(x

f
s , t) (6b)

where F f
Y (t) and F f

Z(t) are the force interactions in the two polarization planes Y (xfs , t) and Z(xfs , t)
are the string displacements at the fret location, and Ẏ (xfs , t) and Ż(xfs , t) are the corresponding
velocities.

String/bridge interaction The coupling between the string and the body of the violin first passes
through the string/bridge interaction. Following Inácio et al. [14], as in Eqs. (5) and (6), we introduced
a penalty model for this interaction by connecting the string to the bridge through a very stiff spring
(with a damper to minimize residual local oscillations). The forces exerted by the body on a given
string s are given by:

F b
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]

(7b)

where Kb is the (high) stiffness coupling coefficient between the bridge and the strings, Cb is
the damping coupling coefficient, Ys(x

b
s, t), Zs(x

b
s, t) and Ẏs(x

b
s, t) and Żs(x

b
s, t) are the string

displacements and velocities at the bridge location xbs in both directions respectively. As presented
in [10] in detail, the bridge motion at the anchoring location of any given string s, Y b

s (t) and Zb
s(t), can

be computed from the bridge feet motion through the relation:

{
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and similarly for the velocities. Here, (ys, zs) refers to the string contact point coordinates in the plane
of motion of the bridge, Lb = yb2 − yb1 is the distance between the bridge feet and Zb1(t) and Zb2(t)
are the displacements of the bridge feet, which are computed as:
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) , Zb2(t) =
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where φSB
n (xB1

,yB1
) and φSB

n (xB2
,yB2

) are the mode shapes of the soundboard at the bridge feet
locations (xB1

,yB1
) and (xB2

,yB2
).

Soundboard dynamics In a modal framework, the body response is described by the set of modal
equations:

mSB
n q̈ SB

n (t) + cSBn q̇ SB
n (t) + kSBn q SB

n (t) = FSB
n (t) (10)

where mSB
n , cSBn and kSBn are the soundboard modal parameters, and q SB

n (t) the soundboard modal
responses (n = 1, . . . , NSB). As for the strings, the modal forces are obtained by projecting the
bridge/soundboard interaction forces on the instrument body modal basis, yielding to:

FSB
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SB
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SB
n (xb2 ,yb2) (11)



where Fb1(t) and Fb2(t) are the vertical forces between the bridge feet and the soundboard. By
assuming a quasi-static response of the bridge, these vertical forces are given by [10]:
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For illustration, Figure 2 presents two spectrogams of the soundboard velocity obtained considering
first a single string, and then the fully 12-string/bridge/body coupled model, for a vertical pluck of the
lowest open string. Note the appearance of audible beats in the sound which shows the sympathetic
excitation of slightly mistuned harmonics of the different string subsystems due to their coupling at
the bridge.

Figure 2: Spectrograms of the soundboard velocity computed from the linear string model. Left: one
string simulation. Right: fully coupled model simulation.

3 Nonlinear coupled equations for the string dynamics

3.1 Equations for the three-dimensional string motions

As a general model, the three-dimensional coupled dynamics of a string at position x and time t,
which involves an axial motion X(x, t) and two perpendicular transverse motions Y (x, t) and Z(x, t),
is given by the following set of equations, see for instance [12]:
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2X
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describes the relative elongation of the string, ρ is the mass density of the string, S its cross-
sectional area, E its modulus of elasticity and T0 the initial tensioning axial force. As seen, only
spatial derivatives of the string motions are present in the right hand-side forcing terms, and as such,
nonlinear effects considered here come from purely geometrical effects. In the literature, Eqs. (13)
and (14) are usually referred as the “geometrically exact” model of the vibrating strings. Although
exact, the use of Eqs. (13) and (14) is rather limited in practice since no analytic solution can be
found. Furthermore, from a numerical point of view, it does not allows separation between space
and time-domain. To simplify the equations, different assumptions can be applied and a common
practice is to use a Taylor expansion of Eq. (14) and then truncate the series with respect to the
relative orders of the magnitude of the string displacements. Morse and Ingard proposed a simplified
model by truncating the series up to the third order in the string displacements [12]. Interestingly,
it highlights that mode-coupling arise from quadratic and cubic nonlinearities. A further but crude
approximation is often made in the literature by ignoring the longitudinal-to-transverse coupling. For
interested readers, a thorough treatment of approximate models stemming from the general model
and often used for simulating the vibrating string has been given by Bilbao [5].

3.2 The Kirchoff-Carrier string model

3.2.1 Equations of the model

An alternative appealing model for the dynamics of nonlinear strings has been presented by
Kirchoff [15] and Carrier [16]. Strickly speaking, it describes the transverse motions of the string
and includes the effect of the nonlinearity as a driving term which is a function of the net increase in
string length. The model thus encapsulates the changes in axial tension, but it is expressed globally
in terms of a dynamical tension Tdyn(t) computed by a spatial average of the square of the string
slope as:

Tdyn(t) =
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∂x

]2
dx+
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2L
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0

[
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∂x

]2
dx (15)

The total tension of the string then reads:

T (t) = T0 + Tdyn(t) (16)

so that the three-dimensional dynamics of the string for large-amplitude is simply given as:
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One recognizes the standard wave equations with an additional forcing term due to the distributed
dynamical change in axial tension. However, by ignoring explictly the dynamics of the longitudinal
motion, the validity of the Kirchoff-Carrier string model is rather restricted. In particular, one
understands that all the dynamical responses of the longitudinal modes must be small. Such a
situation occurs when the frequencies of excitation of the longitudinal modes are far lower than
their resonant frequencies and according to Anand [1], this happens when the order of the excited
transverse modes is smaller than the ratio of longitudinal to transverse wave propagation speed.

3.2.2 Modal formulation

The implementation of the Kirchoff-Carrier string model in the previsouly descrided modal
computational model can be done in a straightforward manner. By looking at Eqs. (1) and (17), it
is easy to see that the dynamical change of tension is reflected by an additional term in the modal



force of the string transverse motions which are written, for both polarizations, as:

FY
n (t) = Tdyn(t)
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and which after performaing the integrations, takes the following form:
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The modal form of the dynamical tension is then obtained by substituing the modal expansions (2) in
(15) and by accounting for the orthogonality relationships of the string mode. After some calculations,
it results in the following expression:
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which, inserted in Eqs. (19), yields finally to:
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The Kirchoff-Carrier model is thus of the third order in the amplitude of the tansverse motions.
However, it is apparent that the model lacks some coupling terms regarding to the standard model
originally derived by Morse and Ingard [12]. Indeed there is no quadratic coupling terms present in
Eq. (21) and this limits in particular any comparison with precise measurements. Bank and Sujbert [6]
discussed such limitations for applications to sound synthesis for the case of piano strings.

4 Time-domain simulations

Two cases have been chosen for illustration: the first simulation deals with a single string
constrained at the point of the bridge with no coupling to the soundboard, and the second simulation
pertains to the full 12-string model which includes the soundboard dynamics. The lowest string was
puckled at a distance of one-fifth of the “acoustical length” of the string from the bridge, at an angle of
5 degrees to the z-plane. The strings total length is 0.615 m while their “acoustical length” is 0.44 m.
The string were assumed harmonic and proportional damping assumptions were retained for both the
strings and the body, using modal damping values of 0.01% and 1% for all modes of each subsystem
respectively. Values of Kb = Ke = 105 N/m, and Cb = Ce= 1 Ns/m were used and for simplicity,
the string/fret interaction was discarded by considering open strings. The time-domain numerical
integration was performed by a standard explicit approach assuming a constant acceleration within
the time-step [17]. The modal basis for the strings and soundboard cover the frequency range 0-5000
Hz, and time-domain responses were sampled using a time step of 2.10−7 s. Simulations starts by
pulling a single string during 10 ms to reach an arbitrary position which is then released to vibrate
freely. At the begining, all displacements and velocities are null. A total number of 607 modes is used.



1st pair 2nd pair 3rd pair 4th pair 5th pair 6th pair

fs [Hz] 493.88 440 329.63 493.88 440 293.66
493.88 440 329.63 246.94 220 143.83

ρs [10−4 Kg/m] 3.78 3.94 6.20 3.78 3.94 11.30
3.78 3.94 6.20 14.48 21.22 35.36

D [mm] 0.24 0.25 0.32 0.24 0.25 0.44
0.24 0.25 0.32 0.5 0.64 0.79

(ys,zs) [mm] (-28.6,16.0) (-19.0,16.0) (-9.3,16.0) (0.0,16.0) (9.5,16.0) (19.8,16.0)
(-25.5,16.0) (-15.6,16.0) (-6.2,16.0) (3.1,16.0) (12.8,16.0) (23.3,16.0)

Ns 14 15 21 14/28 15/31 23/47

Table 1: Sounding frequency, linear density, modulus of elasticity, diameter, position and modal
truncation order for the twelve strings.

Single string constrained at the bridge Figure 3 presents comparitive results obtained at varying
pluck amplitude on the lowest string, with values of 0.001 m, 0.003 m and 0.01 m from up to bottom.
It shows the temporal variations of the axial tension of the string as well as the spectrograms of the
bridge/soundboard interaction force (only one foot is shown). For comparison, spectrograms were
normalized to their energy contents before being processed. At low amplitude (see Fig. 3a), the
total tension remains constant, close to the value of the initial tensionning of the string (T0=59 N) and
consequently, the behaviour of the string is essencially linear as attested by the straight lines in the
spectrogram which represent the string modes. As the excitation amplitude increases, in Fig. 3b and
3c, one observes temporal variations of the string tension which can be as large as the static tension
for large excitation amplitudes (Fig. 3c). As Tdyn(t) becomes no longer negligible compared with
T0, nonlinear effects arise and this explains the striking frequency shift of the entire force spectrum
observed in Fig. 3c. Also illustrated in the spectrograms is the enrichment of the force spectra with
the excitation amplitude which is caused by the nonlinearity and has some clear audible effects.

Fully-coupled model Figure 4 shows two spectrograms of the bridge force stemming from the
linear and nonlinear simulation model of the Portuguese guitar. It pertains to the pluck of the lowest
string with an initial displacement of 10 mm in the z−direction. The linear model behaves as it should,
with excited frequencies coming from a mix between strings and body modes. For the nonlinear
simulation, a similar pitch gliding effect is observed as for the case of a simple string but one notices
that some excited frequencies remain unchanged over the simulation. The corresponding horizontal
lines represent the modes of the instrument body which responds linearly to the time-decreasing
frequencies of the “string modes”.

5 Conclusions

This work aimed at continuing our efforts devoted to the complete modeling of the Portuguese
guitar by using modal-based tecniques. By including the nonlinear behavior of the string for large-
amplitude motions, the model provides a more precised description of the whole instrument dynamics.
However, other improvements are still necessary and crucial issues includes the computations of both
the coupled air-structure modes of the instrument body and the radiated sound. Nevertheless, at
this point, our physical model pertains to the small group of studies which deals with the complete
physical-based modeling of a real-life string instrument. The simulated nonlinear behaviour is clearly
audible, similarly to what happens for real-life instruments.
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(c) Zmax = 0.01 m.

Figure 3: One string simulation. Spectrograms of the foot bridge force as a function of the amplitude
of the pluck excitation.



Figure 4: Fully-coupled model simulation. Spectrograms of the foot bridge force obtained by
considering the linear (left) and nonlinear (right) formulation of the physical model.
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