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ABSTRACT 

 
Numerical studies of the effects of different impedance boundary conditions on the propagation 
of one-dimensional pressure waves governed by a modified Lighthill-Westervelt (LW) equation 
that includes a damping term whose coefficient is a function of the pressure, are reported. The 
boundary conditions include those corresponding to soft and hard walls, and transmission and 
radiation ones. For the case of Dirichlet’s and transmission conditions, a steep front is formed at 
and bounces from the downstream boundary. It is also shown that, for the four boundary 
conditions considered in this study, the pressure field becomes periodic but it exhibits an initial 
transient whose duration depends on the magnitude of the pressure nonlinearity, the damping 
term, and the amplitude and frequency of the sound source. 
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1 Introduction 

The Lighthill-Westervelt (LW) equation [1,2] may be used to describe the nonlinear propagation 
of sound waves. Such an equation may be derived from the expansions of the conservation of 
mass, linear momentum and energy and the equation of state, and, to second-order of 
approximation, may be written as [3]  
 

  
                 

              
     (  )                                                           (1) 

  
where    is the Laplacian operator, p is the (dimensional) acoustic pressure, the third term in the 
left-hand side is a dissipative or lossy one due to the thermal heat conduction and the viscosity 
of the fluid,   is the diffusivity of sound which is related to the sound absorption coefficient   and 
the frequency   as         

         is time,    is the (equilibrium) density of the medium,    is 
the (equilibrium) speed of sound,   is the parameter of nonlinearity which is equal to (   )    
and (    (  ) for gases and liquids, respectively,   is the specific heat ratio, subscripts 
denote differentiation, and     is the nonlinearity parameter [4]. The first two terms in Eq. (1) 
are linear and correspond to wave propagation and diffraction, the second one represents 
thermo-viscous losses and the last one corresponds to nonlinearities. Equation (1) with      is 
usually referred to as the lossy LW equation, whereas     corresponds to a lossless medium. 
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Equation (1) contains a third-order time derivative and requires that three initial conditions be 
specified. In addition, in the absence of nonlinearities, its dispersion relation is cubic and, 
therefore, has three roots, and the frequency   is a complex number [5].  
Recently, the lossy LW Eq. (1) has been used in nonlinear acoustics to improve the quality of 
echographic images and the deposition of heat in acoustic ablation therapy [6] due to the 
higher-order harmonic waves that are generated in nonlinear media, the nonlinear distortion of 
the acoustic field in human tissue [7], the nonlinear propagation of ultrasound beams from 
concave focusing sources [8,9], the distortion and harmonic generation in the near-field of finite 
sound sources [10], etc. 
Equation (1) has been studied numerically by means of iterative techniques based on the 
Green’s function for the linear operator of that equation, including volumetric source terms due 
to mass injection and forces [6,7], variable density and compressibility, operator-splittting 
techniques based on Padé approximations, finite differences in the time domain for a modified 
LW equation that accounts for attenuation and dispersion effects through the introduction of a 
causal convolution propagation operator [11], etc. In some of the finite difference studies of Eq. 
(1), it was found that a fourth-order accurate discretization of the second-order spatial 
derivatives was unstable and, in order to remove such an instability, a modified equation 
approach had to be used [11].  
The lossless LW Eq. (1) has been employed to study shock wave formation in one-dimensional 
flows [5,12] by means of finite difference methods and has been generalized to account for 
losses in a phenomelogical manner [5] as 
 

          (    )     (         )              (  )
 ,                               (2) 

 
where the term    (    )    in the left-hand side of Eq. (2) with     accounts for losses, and 
        is the Mach number which is assumed to be small. Equation (2) is non-dimensional 
where (the dimensional)  ,   and the velocity have been nondimensionalized with respect to  , 
    , and    the acoustic density with respect to      and  V and L are characteristic values of 
the fluid velocity and length scale, respectively. 
The losses term in Eq. (2) introduces viscous damping in a phenomenological manner, but does 
not introduce a third-order time derivative. The dispersion relation when such a dissipation term 
is employed, is a quadratic expression for the frequency as a function of the wavenumber, 
rather than the cubic one that would result from Eq. (1).  
Equation (2) reduces to the linear wave equation for either      or     , i.e., for zero Mach 
numbers or zero nonlinearities. In such case, it is well-known that Eq. (2) has two characteristic 
lines along which propagation occurs, i.e., the left- and right-running waves. For nonlinear flows 
and non-zero Mach numbers, Eq. (2) is hyperbolic provided that (         )   , and becomes 
an elliptic one for (         )   ; therefore, hyperbolic behavior occurs for nondimensional 
acoustic densities smaller than   (     ). Since only the product     appears in Eq. (2), it may 
be stated that the nonlinearity depends on this product and, therefore, the sound propagation is 
a function of this product.  
In one dimension,         , and we have used the following initial conditions  

 
 (   )   ,        (   )   ,                                                               (3) 

                                              
while the boundary condition at the upstream boundary is 
 

 (   )  (  )      (   ),                                                               (4) 
 

where   is a natural number or zero, while at the downstream boundary we have imposed 
  

   (   )      (   )   ,                                                               (5) 
 
which correspond to Dirichlet’s, Neumann’s and Robin’s boundary conditions for      and 
   ,     and    ,      and    , respectively, or soft- and hard-wall and 
impedance/transmission boundary conditions, respectively, where   and   could be functions of 
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time, but have been assumed constant in this study. We have also considered the following 
Sommerfeld’s radiation boundary condition  
 

  (   )    (   )   (   )   ,                                                               (6) 
 
where   is a local speed to be discussed later. Unless otherwise stated, we have assumed that 
         , where   and   are constants, and a (nondimensional) frequency       

2 Numerical methods and boundary conditions 

Equation (2) can be written as the following system of two nonlinear, first-order differential 
equations   
 

                   (   )          ( )   (         ),              (7) 
 
where we have assumed that            ; if this condition is not met,      (     ),  and    
is governed by the quadratic equation that results from Eq. (2) after imposing the condition 
              The second-order spatial derivative in Eq. (7) has been discretized by means of 
a three-point, fourth-order accurate, compact operator method as follows [13] 
 

 (                  )      (                )     (   ),                           (8) 
 
where       ,    is the spatial step size, and the subscript i denotes        . Upon applying 
Eq. (7) at the grid point i and using Eq. (8) in the resulting equation, a system of ordinary 
differential equations for the nodal values    and    is obtained and, therefore, the original partial 
differential Eq. (2) is transformed into a system of nonlinear ordinary differential equations by 
what is referred to as a method of lines. The resulting system of ordinary differential equations 
was solved by means of the well-known fourth-order accurate, explicit Runge-Kutta method, so 
that the accuracy of the resulting numerical procedure is  (        ) provided that the 
Neumann’s, Robin’s and Sommerfeld’s boundary conditions are discretized with the same order 
of accuracy.  
In order to achieve fourth-order accuracy when implementing Neumann’s or Robin’s at the 
downstream boundary, the pressure at nodes adjacent to that boundary was expanded in 
Taylor’s series expansion about the pressure at that boundary, and the second-, third- and 
fourth-order spatial derivatives which appear in those expansions were eliminated to obtain a 
fourth-order accurate discretization of the first-order spatial derivative at the downstream 
boundary which involves the pressure there as well as the pressures at points adjacent to the 
downstream boundary. 
In the implementation of the radiation boundary conditions given by Eq. (6), several issues 
arise. First, one has to decide on the local speed of sound to be used in that equation. In the 
first approximation followed here, the local speed of sound that appears in Eq. (6) was assumed 
to be unity in accord with the linear (nondimensional) wave equation; such an approach 
corresponds to approximating the term (         )     by      in Eq. (6) and is expected to be 
valid provided that              A second approximation was based on the true local speed of 
sound provided by Eq. (6), i.e.,    (   )    (         )  The second issue that arises is the 
discretization of both the temporal and spatial derivatives that appear in Eq. (6) and the overall 
accuracy of the resulting finite difference discretization. A first-order discretization in space and 
time of Eq. (6), i.e., 
 

(  
       

 )/       (  
       

 )/         
          

                            (9) 
 
where   denotes the grid point corresponding to the downstream boundary, i.e., (   )      
the superscript   corresponds to        ,     denotes the time step, and and we have used 
equally-spaced grids in space and time, while providing an explicit expression for the pressure 
at the downstream boundary. Equation (9) was found to be accurate provided that the pressure 
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wave propagating from  the upstream to the downstream boundary was sufficiently far away 
from the later, but introduced too much damping when the pressure wave was close to, 
interacted with and was reflected from the dowsntream boundary. The amount of damping and 
dispersion was found to decrease when an explicit, second-order accurate, finite difference 
discretization was used [14]; however, in this case, the overall accuracy of the method drops 
from  (        ) to  (        )  
In order to achieve fourth-order accuracy in both space and time when implementing the 
radiation boundary condition given by Eq. (6), we have employed the high-order non-reflecting 
boundary conditions (NRBC) operator developed by Higdon [15], i.e.,  
 

∏ (    
          

 )     
                                                     (10) 

    
where the differential operators that appear in Eq. (10) were discretized as indicated in Eq. (9). 
Equation (10) provides an explicit expression for   

   , and can be implemented to any order    
by means of the following simple algorithm 
  

∏ (         
        

 )  
     

                                        (10) 
 
where  
 

        
  

  
                  

  

  
       

   
       

       
   

       
                    (12) 

 
It must be pointed out that, since the problem considered in this study is one-dimensional, i.e., 
only plane waves are studied,    was taken as   , where, as stated above, it may be taken to be 
equal to one or the true local speed of sound corresponding to  the right-running characteristic 
of Eq. (6); in multi-dimensional problems, however, the local speed    must be chosen so as to 
minimize the reflection from the downstream boundary but, if it is chosen as the wave speed of 
Eq. (6), the first-order condition provided by Higdon [14] is identical to Sommerfeld’s radiation 
boundary condition, i.e., Eq. (6). 
Although long-time instabilities might occur when high-order NRBC are employed because of 
the use of high-order derivatives (cf. Eq. (14) with     ), if the governing equation in the interior 
of the domain and the NRBC both admit solutions at zero wavenumber and frequency and if the 
data of the problem also include such zero modes, then a slowly growing smooth instability is 
possible. However, as observed by Givoli and Neta in a two-dimensional problem [16,17], 
whether this instability shows up in practice depends on both the order of the derivatives on the 
NRBC and the number of spatial dimensions; these instabilities do not arise in the presence of 
dispersion or if the problem data are confined to non-trivial modes. 
It should also be pointed out that sometimes the implementation of Higdon’s boundary 
conditions is referred to as the complementary operators method [18] when two solutions that 
employ absorbing boundary conditions (ABC) exhibit a complementary behavior, i.e., the 
reflection coefficients associated with the two ABC are exactly opposite to each other.           
In addition to the fourth-order accurate method presented here, the time-linearization technique 
presented in [5] which is second-order accurate in time and fourth-order accurate in space was 
used with first- and second-order accurate implementations of the radiation boundary conditions 
and second-order spatial approximations for the downstream Neumann’s and Robin’s boundary 
conditions in order to assess the effects of time linearization and the order of accuracy in both 
space and time on the numerical results. The results of these numerical simulations indicate 
that the time-linearization method is more stable than the fourth-order accurate Runge-Kutta 
method presented here for the same order of spatial discretization. This is attributed to the fact 
that the time linearization method treats the nonlinear term on the right-hand side of Eq. (2) in 
an implicit, albeit linearized manner, but provides an explicit expression for the acoustic 
pressure, if the spatial derivatives are treated explicitly: in addition, since the coefficient of the 
damping term is treated explicitly, it was found that this term has a stabilizing effect on the 
numerical calculations. 
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3 Presentation of results 

Figure 1 illustrates the acoustic pressure field as a function of space and time for a downstream 
acoustic pressure equal to zero, i.e., Dirichlet’s boundary conditions, and clearly exhibits the 
sinusoidal pressure at the upstream boundary, an initial transient which is visible at early times 
near the downstream boundary. Figure 1 also shows the development of a steep pressure 
gradient at the downstream boundary; in fact, for µ = 0, a shock wave is formed there. In the 
presence of damping, the results shown in Figure 1 as well as others not presented here, 
indicate that the pressure gradient at the downstream boundary evolves until reaching a 
maximum value and then decreases as the upstream boundary pressure decreases. It must be 
noted that the upstream boundary pressure employed in this study is positive for    (     ) 
with   equal to zero or even, and negative for   odd. This means that for   zero or even, there 
is a compression wave that propagates from the upstream to the dowstream boundary; for   
odd, the pressure at the upstream boundary is negative, and an expansion or rarefaction wave 
is formed as shown in the left side of Figure 1.  

 

Figure 1 – Acoustic pressure field as a function of space and time for Dirichlet’s boundary 
conditions, α = 5, γ = 1,      ε = 0.2, β = 1,        and            

For the same values of the parameters as those of Figure 1 and Neumann’s boundary 
conditions, the results presented in Figure 2 show an initial transient followed by a periodic 
regime, whereby there is a periodic behavior of the relative maxima and mimima of the pressure 
at the upstream and downstream boundaries; in fact, when a maximum is observed at the 
upstream boundary, a minimum can be seen at the downstream one, and vice versa. A similar 
behavior to that shown in Figure 2 is illustrated in Figure 3 that corresponds to Robin’s 
boundary conditions with     in Eq. (5), although the downstream boundary pressure is higher 
in Figure 3 than in Figure 2. 
For the case of no damping and radiation boundary conditions, the results are presented in 
Figure 4 clearly show compression and expansion waves that propagate along the right-running 
characteristic and that the initial transient to achieve a periodic behavior is smaller than those of 
the Neumann’s and Robin’s boundary conditions which, in turn, require a smaller time to 
achieve periodicity than the Dirichlet’s boundary conditions.  
The results presented in Figures 1-4 do not show any numerical instabilities and the pressure 
field is a smooth function of space and time. For higher nonlinearities, i.e., higher values of    , 
it was observed that the time step had to be decreased substantially and small oscillations could 
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be observed in the pressure field. The amplitude of such oscillations was found to decrease 
when both the time and spatial step sizes were decreased and, for large values of     
oscillation-free numerical results could be obtained with 4001 grid points and a time step 
smaller than 0.00005. As stated above, Eq. (2) changes type at a critical pressure that only 
depends on    ; for pressures higher than this critical value, Eq. (2) may become locally elliptic 
and the numerical method presented in this paper cannot cope with such a regime. 

 
Figure 2 – Acoustic pressure field as a function of space and time for Neumann’s boundary 

conditions, α = 5, γ = 1,      ε = 0.2, β = 1,        and            

 
Figure 3 – Acoustic pressure field as a function of space and time for Robin’s boundary 

conditions, α = 5, γ = 1,      ε = 0.2, β = 1,             and            
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Figure 4 – Acoustic pressure field as a function of space and time  for µ = 0 and radiation 
boundary conditions, α = 0,      ε = 0.2, β = 1,         and            

4 Conclusions 

A time-domain finite-difference method based on the use of a three-point, fourth-order accurate, 
compact finite difference discretization of the second-order spatial derivatives, and an explicit, 
fourth-order accurate Runge-Kutta method for time integration, has been developed to study the 
effects of the downstream boundary conditions on the acoustic pressure field governed by the 
nonlinear, one-dimensional, lossless Lighthill-Westervelt equation. It has been shown that, in 
the presence of a phenomenological damping model, a periodic behavior is observed for both 
soft- and hard-wall, transmittance and radiation boundary conditions after an initial transient 
which depends on the damping term and the downstream boundary conditions, when the 
acoustic pressure at the upstream boundary is sinusoidal. This periodic behavior seems to be 
analogous to that observed in non-conservative, nonlinear dynamical systems subject to 
excitation. It was also found that the coefficients of the phenomelogical damping term employed 
in this study play a paramount role in determining the acoustic pressure field and the 
interactions of the presure waves with the downstream boundary; in fact, the slope of the 
pressure at the downstream boundary decreases as the coefficient of the damping term is 
increased and, in some cases, it is an almost linear function of space at each time. 
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