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ABSTRACT 

 
The effects of stress relaxation on one-dimensional nonlinear acoustics are analyzed by 
considering a viscous Burgers’ equation with time delay. It is shown that, for small delays, a 
Taylor’s series expansion to first order results in a nonlinear equation analogous to that of the 
regularized long-wave equation which is solved asymptotically by means of a regular 
perturbation technique. Both the asymptotic and the numerical solution of the time-delayed 
Burgers’ equation are shown to be in agreement with each other and indicate that the time 
delay affects the shock wave development and curvature. For large time delays, it is shown that 
a solitary wave may be formed and that substantial radiation may result depending on the initial 
conditions. 

Keywords: relaxation, Burgers’ equation, nonlinear wave propagation. 

1 Introduction 

The one-dimensional Burgers’ equation, i.e., 
 

                                                                                        (1) 
 
where  ,   and   denote the velocity, time and spatial coordinate, respectively,          is the 
(Newtonian) stress and   is the (kinematic) viscosity coefficient, has been used frequently in 
many branches of fluid dynamics for the study of turbulence [1,2], traffic flow, acoustics, etc. 
[3,4]. The inviscid Burgers’ equation, i.e., Eq. (1) with    , has an analytical solution and may 
result in the formation of shock waves, depending on the initial conditions; on the other hand, 
the viscous Burgers’ equation, i.e., Eq. (1) with    , may be solved analytically by means of 
the Cole-Hopf transformation [5,6] which transforms it into a linear heat transfer equation. The 
viscous Burgers’ equation exhibits steepening for small values of the viscosity coefficient, and 
the steepness increases as   is decreased. 
In this paper, we shall be concerned with  
 

                                                                                               (2) 
 
where   is a time delay or lag. Equation (2) reduces to Eq. (1) for    . For       , a Taylor’s 

series expansion of the right-hand side of Eq. (2) about       yields 
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                                                                         (3) 

 
where       . Equation (2) with     is usually referred to as the regularized long-wave 
equation [7] and is a model for describing long-wave behavior and the formation of undular 
bores, the study of non-linear dispersive waves, shallow water waves, ion acoustic plasma 
waves, etc. It must be noted that Eq. (2) indicates that a velocity gradient at          results in 
a stress at       and that we have asumed that   is positive. If   were negative, then a time 
translation, followed by a Taylor’ series expansion of Eq. (2) would result in a nonlinear second-
order wave equation which will not be considered in this study; such an equation is a bit more 
complex than the one derived by Fay [8] to study the propagation of finite-amplitude, acoustic 
plane waves. Both Eq. (3) and Fay’s Eq. (4) include a third-order mixed derivative, i.e., the 
second term in the right-hand side of Eq. (3). 
In previous studies that have considered relaxation effects on acoustics and shock wave 
structure, authors have considered only a single relaxation process and applied the operator 
            to the original (unrelaxed) equations [9-12]. Such an approach is analogous to the 
inversion of the same operator in the formulation described above, but introduces a second-
order time derivative, thereby transforming the original parabolic equation into a hyperbolic one 
unless certain approximations are made to neglect such a derivative. By way of contrast, the 
approch proposed here is based on the assumption that there is a time delay between the 
stress and velocity gradient and does not result in an increase on the order of the time 
derivative. 

2 Asymptotic analysis 

If in Eq. (3), the       are neglected and     , it may be assumed that the resulting equation 
can be solved by means of the following regular perturbation expansion 
 

                                                                     (4) 
 
which upon substitution into Eq. (3) yields, at leading-order in    
 

                                                                                     (5) 
 
i.e., the viscous Burgers’ equation, whereas at        one can easily derive  
 

                                                                                    (6) 
 
which is a linear second-order partial differential for    forced by         and whose coefficients 
depend on the leading-order solution          Equation (6) is a linear generalized regularized-
long wave (GRLW) equation [13]. Although, Eq. (5) may be solved analytically in some cases by 
means of, for example, the Cole-Hopf transformation, the dependence of the coefficients of Eq. 
(6) on space and time makes it difficult to solve this equation analytically.  
In Eq. (5), the nonlinear terms cause steepness, whereas the viscous ones cause dissipation. 
This is clearly shown in the dispersion relation for the linearized Eq. (5), i.e.,              

              which may be written as 
 

                                                                               (7) 
 
where       ,                        , and     and   are the amplitude, frequency and 
wavenumber, respectively. For real wave numbers, the angular frequency is a complex number 
whose real and imaginary parts are        and          , respectively, so that        

            (          )  and the amplitude decreases with time owing to the viscosity, 
while the phase speed is    On the other hand, a similar linearized analysis of Eq. (3) yields the 
following dispersion relation 
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                                                                             (8) 
 
which for positive  , yields                   and                     and the damping 
increases as the wavenumber is increased; there is no damping for a wavenumber equal to 
zero and the largest damping occurs as the wavenumber tends to infinity and is asymptotic to 
      . On the other hand, the phase speed is              and tends to zero as the 
wavenumber approaches infinity.  Moreover, Eq. (3) is a dispersive wave equation which in the 
absence of viscosity may result in the formation of solitons when the nonlinearities balance the 
dispersion term [13]. It must be noted that when considering Eq. (3), we have treated   and    
as independent parameters, even though our derivation of such an equation was based on 
Taylor’s series expansion and, therefore,                

3 Numerical methods and boundary conditions 

Equation (3) can be written as the following system of equations  
 

                                                   ,                                      (9) 
 
which clearly indicates that   and   are nonlinearly coupled and could be determined iteratively 
by means of, for example, finite difference methods. Since the second Eq. (9) is linear in  , one 
could also solve this equation analytically in a piecewise manner and then solve the first Eq. (7) 
to obtain   [13,14]; however, the resulting finite difference method, albeit locally exact, has an 
accuracy that depends on the discretization of the first- and second-order spatial derivatives of 
 . Moreover, since in the absence of dispersion, Eq. (3) is characterized by steep moving fronts 
whose steepness increases as the viscosity is decreased, we have developed the following 
fourth-order accurate method in both space and time. The first Eq. (9) is solved in time by 
means of a fourth-order accurate Runge-Kutta method whose four stages require the value of  ; 
therefore, at each stage, one has to solve the second Eq. (9) which was discretized as follows. 
From the initial conditions and by defining        and        , one can easily determine the 
nodal values of   and    by solving the two following tridiagonal systems of linear algebraic 
equations 
 

                                                     ,                           (10) 
 

                                                  ,                           (11) 
 
which correspond to a three-point, fourth-order accurate, compact operator method 
discretization of the second- and first-order derivatives, respectively [15], where the subscript   
denotes the    th grid point, i.e.,        . 
The second Eq. (9) can be written as  
 

                                                   ,                    (12) 
                                      
which, upon using a similar fourth-order accurate discretization to Eq. (10), provides the nodal 
values of  , and, therefore, a fourth-order accurate discretization of the spatial derivatives. 
Therefore, the method of lines described in this section requires at each stage of the fourth-
order accurate Runge-Kutta method the solution of three systems of tridiagonal matrices for the 
determination of  ,   and  , and due to its explicit caracter and the compact discretization of the 
first- and second-order spatial detivarives is subject to stability restrictions that depend on the 
Courant, Fourier and dispersion numbers, i.e.,                   , and          respectively, 
where   is a characteristic value of  . 
In addition to the fourth-order accurate method described in previous paragraphs, the following 
implicit, exponential technique has also been used. Equation (12) can be approximated in the 
interval             by   
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                                                                                (13) 
 
which can be solved anlaytically in that interval subject to the conditions                     
    and               to obtain a piecewise exponential solution, whereas the first Eq. (9) was 
discretized by means of a   method as  
 

   
        

             
            

                                          (14) 
 
where the superscript   denotes the    th time level, i.e.,          Equation (14) results in an 
explicit, first-order accurate method for    , and implicit, first- and second-order accurate 
techniques for     and         respectively. However, implicit methods require the use of 
iterative methods for their solution due to the nonlinear dependence of   upon   and its second-
order spatial derivatives. It must also be noted that the spatial fourth-order discretizations 
presented above can also be used together with Eq. (14) to obtain the numerical solution, but 
this technique would also require an iterative procedure and would be more costly than the 
exponential method just described because it does require the solution of two systems of 
tridiagonal matrices at each iteration, whereas the exponential method described above 
requires only the solution of a tridiagonal system at each time step. Iterations may be avoided 
altogether by linearizing Eq. (3) at each time level and solving the resulting linear equations by 
means of either the fourth-order compact or the exponetial method described in this section. 

4 Presentation of results 

Figure 1 illustrates the numerical solution corresponding to         and     and an initial 
condition                         with          and      , and homogeneous 
Dirichlet boundary conditions, and shows the evolution from a bell-shaped profile to the 
formation of a steep shock front whose thickness is not zero on account of the small (but 
different from zero) viscosity coefficient employed in the study. Although not clearly visible in 
Figure 1, the maximum pressure decreases as time increases on account of the viscosity.   
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Figure 1 – Acoustic pressure field as a function of space and time for Dirichlet’s boundary 

conditions,         and    , and a Gaussian initial condition 

For the same values of the parameters as those of Figure 1 but         the results presented 
in Figure 2 indicate that a shock wave is formed at the advancing front whereas the rear of the 
wave exhibits an almost linear behavior as a function of the spatial coordinate. Although not 
shown here, the results presented in Figure 2 are entirely similar to those presented in Figure 1 
and those corresponding to        i.e., for dispersion parameters which are larger than the 
viscosity, thus indicating that for the conditions considered in Figures 1 and 2, the asymptotic 
analysis presented previously in this paper is valid even for values of        thus confirming 
both the validity of both the second-order approximation and the numerical results. It should 
also be noted that no oscillations are observed in the numerical results illustrated in Figures 1 
and 2. 

 
Figure 2 – Acoustic pressure field as a function of space and time for Dirichlet’s boundary 

conditions,         and       , and a Gaussian initial condition 

Similar results to those presented in Figures 1 and 2 have also been obtained for the following 
sinusoidal condition                  and some are shown in Figure 3 which exhibits similar 
trends to those discussed above until the shock wave reaches the downstream boundary. 
Beyond that time, the results are not valid, although they are shown in Figure 3 in order to 
illustrate the robustness of the numerical methods presented here as well as the non-physical 
effects that occur when the computations are extended beyond the time at which the shock 
wave strikes the downstream boundary. Despite the numerical robustness and the absence of 
oscillations, the results illustrated in Figure 3 clearly indicate that the maximum amplitude 
decreases with time and that the tail is a linear function of space, once the shock wave reaches 
the downstrem boundary. 
Although not shown here, as the viscosity coefficient is increased, the wave’s maximum 
amplitude decreases, the width increases, and a shock wave may not form. On the other hand, 
as the dispersion parameter is increased, a balance may be reached between the nonlinear 
convective terms and the dispersion ones and, then a solitary wave solution may appear. In the 
absence of viscosity, these solitary waves are solutions of the equal-width, regularized-long 
wave and generalized regularized-long wave equations [13,14]. 
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Figure 3 – Acoustic pressure field as a function of space and time for Dirichlet’s boundary 

conditions,         and    , and a sinusoidal initial condition  
 

  
Figure 4 – Acoustic pressure field as a function of space and time for Dirichlet’s boundary 

conditions,      and      , and a a Gaussian initial condition characterized by        
    and      

 
Figure 4 illustrates the acoustic field for an initial Gaussian pressure distribution in the presence 
of dispersion/relaxation but not viscosity. The initial conditions considered in this figure do not 
correspond to the exact solution of Eq. (3) in the absence of viscosity and, as a consequence, 
there is an initial transient whereby the wave undergoes a transformation that results in the 
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formation of several solitary waves that move apart from each other and that preserve their 
integrity. The first generated wave is the one with the largest amplitude; the amplitudes of the 
waves decrease as their generation times increase. The back of the last wave exhibits a steep 
front followed by a smooth transition to the upstream boundary condition, thus suggesting that 
these solitary waves are formed as a consequence of the steepness caused by the nonlinear 
convection terms which, eventually, are balanced out by dispersion. Figure 4 also shows that 
the initial conditions employed in this study results in the formation of a fan of solitary waves 
which do not interact with and separate from each other as time increases. It must be noted 
that, if the initial condition corresponded to the exact solution of Eq. (3), then only one solitary 
wave would have been formed in accordance with previous theoretical and numerical results for 
the regularized long-wave equation [14]. 

 
Figure 5 – Acoustic pressure field as a function of space and time for Dirichlet’s boundary 

conditions,        and      , and a a Gaussian initial condition characterized by        
    and      

 
When the medium is a viscous one, the effect of viscosity is to thicken the wave width and 
decrease its amplitude as illustrated in Figure 5. In addition, the results presented in Figure 5 
indicate that the wave’s front has a similar structure to those observed in Figures 1 and 2, 
whereas the back of the wave is more rounded than those of those figures. Figure 5 also shows 
the complex dynamics at initial times characterized by a drop in amplitude and adjustements 
from the initial Gaussian shape to that of a decaying weak shock.  

5 Conclusions 

The effects of relaxation on the propagation of one-dimensional acoustic waves have been 
analyzed by considering the linear momentum equation and introducing a delay or time lag 
between the velocity gradient and the stress in a Newtonian fluid. Such an approximation 
results in a modified Burgers’ equation that reduces to the original Burgers’s equation for zero 
relaxation times. It has been shown that the resulting equation includes the equal-width and 
regularized long-wave equations that admit solitary wave solutions. It has also been shown that, 
for both initial conditions of the Gaussian and sinusoidal types, a shock wave is formed whose 
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amplitude decreases as the viscosity is increased and that a regular perturbation method may 
be used to study the wave propagation. In the absence of viscosity, it has been found that there 
is a steepening of the wave caused by the nonlinear convection terms, and many solitary waves 
may be formed whenever these nonlinearities are balanced by dispersion. However, when there 
is viscosity, there is an initial transient during which the initial amplitude decreases and the 
pressure field adjusts so that a decaying weak shock wave is formed.  
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