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Abstract 
It is convenient to study wave phenomena in inhomogeneous media using dynamic effective material 
properties. In addition to the traditional properties (effective wavenumber, impedance, density, and 
compressibility), recent research has shown that inhomogeneous media with asymmetric unit cells 
and/or composed of a periodic lattice require effective properties in the long wavelength limit that 
couple the averaged volume-strain and momentum fields. This behavior, known as Willis coupling in 
elasticity, is analogous to bianisotropy in electromagnetism. The present work demonstrates the 
microscale and mesoscale origins of macroscopic coupling, and that the resulting effective properties 
satisfy passivity and causality. 
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1 Introduction 

Recent interest in metamaterials has provided a new impetus for the study of homogenization schemes 
that account for multiscale dynamics. One very important result of general homogenization in 
elastodynamics that has received relatively little attention to date, is the fact that the effective dynamic 
properties of inhomogeneous elastic materials results in constitutive relations that couple strain to 
momentum and stress to velocity in the frequency domain. This type of coupling has come to be 
known as Willis coupling since it was first formally introduced by J.R. Willis in the 1980’s [1]. Recent 
work by Milton and Willis [2] outline the development of this theory and present it as analogous to 
bianisotropy in electromagnetism. In general, bianisotropy refers to the coupling of electrical 
responses to magnetic excitation and magnetic responses to electrical excitation, as in Equation (1), 
and provides key insights into the origins of Willis coupling. 
 
The study of bianisotropy in electromagnetism began over 200 years ago with the observation of 
“optical activity” in some crystals, in which the polarization of linear polarized light rotates as it 
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propagates through the media [3]. This material response is reciprocal and is also generally known as 
chirality. In the mid-20th century, it was shown that certain magnetic materials exhibit magnetization 
proportional to electrical excitation. This became known as the magnetoelectric effect and is 
nonreciprocal [3]. Both of these effects were demonstrated in engineered materials in the first half of 
the 20th century, and the general response of isotropic materials displaying both chirality and 
magnetoelectric effect (i.e. bi-isotropic materials) can be described using the following coupled linear 
electromagnetic constitutive relations 

 ( ) ( )nr or er nr or erand .D E i H B H i Eκε κ κµκ κ κ= + + + = + + −   (1) 

In these expressions, erκ describes the chirality of the medium, and nrκ  describes the non-reciprocal 
magnetoelectric effect, also known as the Tellegen parameter. More generally, nrκ  can describe 
several nonreciprocal coupling mechanisms including moving media and time-varying media. 

erκ contains coupling mechanisms which are even in wavenumber and reciprocal, hereafter referred to 
as even coupling, including substrate effects [4] and artificial magnetism from structures such as split-
ring resonators and omega particles. The parameter orκ  is odd in wavenumber and reciprocal, 
hereafter referred to as odd coupling, and describes non-local lattice effects [5]. A major result of [5] 
is that neglecting orκ  in the homogenization of periodic arrays can result in effective properties that do 
not satisfy the restrictions placed on material response to external fields by passivity and causality. 
 
The analog to chirality in elastodynamics was first proposed and demonstrated by Varadan et al. [6], 
who restricted their study to transverse (shear) wave fields. However, a surprising result of Willis’ 
work is that it predicts coupling for both transverse and longitudinal waves [1]. Given that fluids only 
support longitudinal waves, one must conclude that coupling exists in acoustics. Reciprocal coupling 
in 1D longitudinal waves has recently been calculated by several groups for periodic media [7,8], and 
it has been noted that even coupling only occurs when the unit cell lacks “reflective symmetry” [7]. It 
was demonstrated in [9] that the “real part” of the coupling computed in [7,8] was due to multiple 
scattering in the lattice, i.e. odd coupling. The multiple scattering analysis in [9] employed a 
homogenization scheme used by Alù [10] in an analogous study of electromagnetic metamaterials. It 
is worth mentioning that analogous nonreciprocal coupling has also been recently demonstrated for 
elastic waves using a layered media with time-varying properties [11], and initial measurements and 
applications of even coupling have been proposed [12]. 
 
The primary focus of this work is to provide physical insight into the origin of two observed reciprocal 
coupling mechanisms for longitudinal waves in acoustic metamaterials. While the homogenization 
procedures in references [7,8] and others can provide exact effective material parameters, the physical 
mechanisms are difficult to discern. This work is therefore limited to the demonstration of reciprocal 
coupling in 1D periodic acoustic metamaterials. This is achieved via source-driven homogenization 
and a self-consistent multiple scattering scheme as in references [9,10]. The resulting effective 
properties contain field coupling and satisfy passivity and causality. 

2 Source-driven homogenization 

This section summarizes the source-driven homogenization procedure of [9,10], which yields closed 
form expressions for effective material properties that are unique for any ( , )kω  pair. 
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2.1 Field definitions 

Consider a lossless homogeneous fluid characterized by mass density, 0ρ , and compressibility, 0β . 
This fluid contains an externally controlled source distribution modeled with complex time-harmonic 
body forces (dipole sources), extf , and volume (monopole) sources, extq , imposing an exp( )ikx i tω−  
dependence. Although fictitious, the continuous source distribution guarantees uniqueness of fields 
and permits the ability to impose any desired ( , )kω  pair [10]. The complex amplitudes of the acoustic 
pressure and particle velocity fields are determined from the momentum and mass conservation 
equations; 

 ext 0 ext ext ext 0 ext extand .ikp ui k if i u p qωρ ωβ+ += =   (2) 

Introducing an array of inhomogeneities into the fluid and averaging over the unit cell (as described in 
[10]), the conservation relations for the averaged fields can be expressed in terms of the background 
material properties, 0ρ  and 0β ,  averaged dipole and monopole polarizations, avD  and avM , 
respectively, as 

 av 0 av av ext av 0 av av extand .ikp u i f iku pi D i Mi qωρ ω ωβ ω+ += =+ −   (3) 

As a result of the source distribution, the same ( , )kω  pair is maintained in the effective medium. 
From Equations (3), constitutive relations can be defined that relate the averaged momentum density 
to the averaged particle velocity and dipole polarization and averaged volume strain to the averaged 
pressure and monopole polarization,  

 av 0 av av av 0 av avand ,u D p Mµ ρ ε β+ += = −   (4) 

respectively. From these constitutive relations, it is clear that the averaged polarizations determine 
how the effective properties of the metamaterial differ from the background media. The derivation of 
the averaged polarizations for a 1D periodic metamaterial is outlined in the next few sections. 

2.2 Inhomogeneity response 

For low volume fractions of inhomogeneities, the inhomogeneity present in the nth unit cell can be 
modeled by equivalent point dipole, nd , and monopole, nm , moments in terms of local fields and 
polarizabilities, α , as   

 d loc, c loc, m loc, c 0 loc,
0 0 0

1 and .n n
n n n n

d mu pi Z
Z

p uiα α α α
ρ β

= − = − −  (5) 

Polarizabilities have units of volume and can be determined from the scattering matrix of a single 
inhomogeneity, and local fields correspond to the fields present at the center of the inhomogeneity in 
its absence. In addition to the dipole, dα , and monopole polarizabilities, mα , Equations (5) contain a 
coupling polarizability, cα ,  which maps the scalar pressure field to the dipole moment and the vector 
velocity field to the monopole moment. It is here at the microscale that even coupling originates from 
asymmetry.  
 
To provide physical insight into this phenomenon, an example asymmetric inhomogeneity is presented 
in Figure 1 which consists of three layers (referred to by 1, 2, and 3 from left-to-right) along with its 
equivalent mechanical system. Layers 1 and 3 are assumed rigid with mass per unit area, 1 1lρ  and 

33lρ , respectively, whereas layer 2 has negligible mass and a stiffness per unit area, 2 21 / lβ . Damping 
due to sound radiation are modeled as dashpots. As demonstrated by the equivalent mechanical 
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system, a pure monopole excitation would be represented by equal time-harmonic forces applied to the 
two masses in opposite directions. For 1 331l lρ ρ≠ , the velocity drops across the two dashpots will not 
be exactly equal and in opposite directions, implying that the field scattered by this simple asymmetric 
inhomogeneity contains contributions from both monopolar and dipolar motion. Similarly, a dipole 
excitation will also excite dipole and monopole moments. This is the origin of even coupling discussed 
in the introduction.  

 
Figure 1 – Microscopic origin of even coupling. 

2.3 Lattice interaction 

To quantify the interaction between unit cells, the local fields are expressed as the sum of externally 
imposed fields and scattered contributions from all other inhomogeneities using the equivalent point 
dipole and monopole moments. For simplicity, choosing 0n =  as the reference, the local fields can be 
expressed in terms of interaction coefficients, C, as 

 0 0
loc ext d c loc ext m c 0

0 0 0

0

0

0

0

1 and .d m m du C C C C Zp
Z

u p
ρ β β ρ

+ − −= = +   (6) 

The interaction coefficients can be calculated as geometric series and are given in [9]. Equations (6) 
demonstrate presence of coupling between dipolar and monopolar motion at the lattice level, or 
mesoscale. From Equations (5) and (6), dipole and monopole moments will be excited for every 
inhomogeneity because local velocity and pressure will be non-zero at each inhomogeneity from 
multiple scattering, regardless of externally imposed fields. This mesoscale coupling is independent of 
the coupling observed at the microscale in the previous section, and since it is related to the gradient of 
the Green’s function, as shown in [9], it will be odd in wavenumber. 

2.4 Effective properties 

To determine the effective properties, the averaged polarizations, Equation (4), must be related to the 
microscale responses and mesoscale interactions. From [10], The averaged dipole and monopole 
polarizations are directly related to dipole and monopole moments, respectively, of a unit cell as 

av 0 /D d V=  and av 0 /M m V= , where V SL=  is the unit cell volume. Combining Equations (2), (3), 
(5), and (6), and solving for  avD  and avM , it becomes clear that averaged dipole and monopole 
polarizabilities are both dependent on the averaged particle velocity and averaged pressure. This leads 
to the constitutive relations in Equation (4), to take on the same form as the bi-isotropic relations, (1);  

 o e o e
av eff av av av eff av aveff eff eff effand( ) ( ) .u i p p i uµ ρ χ χ ε β χ χ− + + −= =   (7) 

The effective mass density is most closely related to dipole-dipole interactions and effective 
compressibility to monopole-monopole interactions at the microscale and mesoscale. The odd, o

effχ ,  
and even, e

effχ , coupling parameters, however, have more complicated relations. o
effχ is proportional to 

cC  at the mesoscale and monopole and dipole contributions, and e
effχ  is proportional cα  at the 

microscale and monopole and dipole contributions. 
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3  Conclusions 

The microscale and mesoscale origins of Willis coupling have been demonstrated for 1D periodic 
acoustic metamaterials using source-driven homogenization and a self-consistent multiple scattering 
scheme. The approach is valid for resonant and non-resonant layered inhomogeneities in a background 
fluid. 
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