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Abstract 
For phononic crystals, the Bragg band gaps generally, but not always, open around high symmetry 
points of the first Brillouin zone. The commonly accepted explanation stems from the empty lattice 
model: assuming a small material contrast between the constituents of the unit cell, avoided crossings 
in the phononic band structure appear at frequencies and wavenumbers corresponding to band 
intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin 
zone. In case the phononic crystal contains ansiotropic solid materials, however, its overall symmetry 
is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic 
crystals composed of elastic anisotropic materials, relying on their slowness surfaces. Even in the case 
of isotropic constituent materials, avoided crossings can appear at intersections between bands for 
elastic waves of different polarizations, i.e. shear and longitudinal, because these are coupled by 
periodicity in the phononic crystal. For bands with similar polarization, avoided crossings can appear 
at reciprocal lattice points that do not sit at boundaries of the first Brillouin zone. 
 

Keywords: phononic crystal, anisotropy, slowness curve, empty lattice model, avoided crossing. 

PACS no. 62.20.D-, 63.20.D- 

1 Introduction 

Phononic crystals are periodic functional composites made of two or more materials with different 
mass densities and elastic constants [1]. They can give rise to complete band gaps, within which the 
propagation of sound, acoustic waves, or elastic waves is prohibited. Moreover, phononic crystals also 
have intriguing properties in the passing bands, leading to their use as building blocks for acoustic 
metamaterials. Phononic crystals have potential applications in many fields, and the related studies 
have attracted a rapidly growing interest (see, e.g., the review by Hussein et al. [2]). 
 
Due to the periodicity of the phononic crystal, the basis of Bloch waves, rather than plane waves, is 
well suited for the description of wave propagation [1]. The eigenstates of Bloch waves are governed 
by periodicity and can be labeled with respect to a Bloch wave vector expressed in the basis of 
reciprocal lattice vectors [3]. When the band structure (the relation between frequency and wave 
vector, also termed dispersion relation) is investigated, it is convenient to restrict the Bloch wave 
vector to a primitive unit cell of the reciprocal lattice, with the universal choice being the first 
Brillouin zone (BZ). Following Brillouin [4], this choice eliminates the discontinuities of the 
dispersion relation except at the zone boundaries. For a given direct Bravais lattice, the first BZ is 
canonically defined as the Wigner-Seitz cell of the reciprocal Bravais lattice. As such its symmetries 
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are those of the symmetry group associated with the reciprocal Bravais lattice. When the periodic 
perturbation in the phononic crystal has a lower symmetry than the direct lattice, however, the first BZ 
“would correspond to the actual periodicity and symmetry of the perturbation, but not the direct lattice 
itself” [4]. Furthermore, even for a given first BZ, the irreducible BZ depends on the symmetry of the 
components [5] or of the unit cell [6]. If care is not taken to plot the band structure along a relevant 
path of the first BZ, erroneous conclusions regarding complete band gaps may be drawn. 
 
For scalar wave propagation in anisotropic photonic crystals, variations of the BZ with material 
anisotropy were studied recently [5,7,8]. Sivarajah et al. in particular investigated band intersections 
and avoided crossings in the dispersion curves of an anisotropic photonic crystal [8]. They found that 
both band intersections and avoided crossings appear at high symmetry points of the Bragg plane BZ, 
which may be different from the first BZ with the introduction of refractive index anisotropy. In the 
case of vector (elastic)waves propagating in phononic crystalswith anisotropic solid components, the 
influence of the elastic anisotropy on band gaps has been the main subject of investigation [1,9,10]. 
Little attention has however been paid to avoided crossings appearing between modes with different 
polarizations [11], even in the case of isotropic phononic crystals [12,13]. Furthermore, the physical 
origin of the positions of those avoided crossing has not been clarified. 
 

 
Fig.1 Band structures for (a) the out-of-plane waves and (b) the in-plane waves of epoxy with contrast 
( 3B A   , d/a = 0.3). The color scale represents the polarization amount in the propagation 

direction, from 0 (shear) to 1 (longitudinal). Solid lines are for the empty lattice model. 

2 Results 

In this paper, we construct an empty lattice model for vector elastic waves propagating in phononic 
crystals with anisotropic solid components. The empty lattice model predicts the positions of band 
intersections in reciprocal space. Its significance appears when the periodic modulation in the 
phononic crystal does not vanish anymore, since intersections can become avoided crossings and band 
gaps open as a result of the existence of avoided crossings. For scalar and isotropic waves, the first 
intersections are lying exactly on the boundaries of the first BZ and subsequent intersections also 
occur at high symmetry points of higher order BZ. For vector waves with different polarizations, 
intersections can define curved closed contours different from the first BZ boundary. They occur 
inside the first BZ. For vector and anisotropic waves with the same polarization, intersections also in 
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general form curved closed contours different fromthe first BZ boundary, unless the symmetry of the 
composing solid is the same as the symmetry of the Bravais lattice. 
 
Here, we study avoided crossings in the phononic band structure by considering a small periodic 
perturbation in the two-dimensional square-lattice phononic crystal. The ratio of inclusion (B) 
diameter to lattice constant is d/a = 0.3. Material of the matrix (A) is either epoxy or rutile. Material 
parameters (mass density  and elastic constants c) of the inclusion B are assumed proportional to 
those of the matrix, that is 

 B B

A A

c

c




  . (1) 

This constriction guarantees that bulk velocities are the same in the two materials so that avoided  
crossings occur around the intersections predicted by the empty lattice model for the matrix. The  
material constant contrast ratio defined by Equation (1) equals 3 in all subsequent examples. 

 
Band structures for square-lattice phononic crystalswith isotropic (epoxy) and anisotropic (Z-cut rutile, 

X-15◦ orientation) solid components are shown in Figures 1 and 2, respectively. For pure shear waves, 
it can be checked that avoided crossings occur at high symmetry points X and M. In addition, in 
Figure 1a, an avoided crossings also appear around the S1 and S2 points. A directional band gap could 
even be generated were a larger contrast considered, as we checked numerically. This phenomenon 
can also be observed in Figure 2a when a larger frequency range is presented. For scalar waves 
propagating in a one-dimensional phononic crystal, such phenomenon can not be found [14]. 
 
 

 
Fig.2 Band structures for (a) the out-of-plane waves and (b) the in-plane waves of Z-cut rutile for the 
X-15°orientation with contrast ( 3B A   , d/a = 0.3). The color scale represents the polarization 

amount in the propagation direction, from 0 (shear) to 1 (longitudinal). Solid lines are for the empty 
lattice model. 
 
For in-plane waves, in Figures 1b and 2b, avoided crossings occur not only at the high symmetry 
points, but also inside the first BZ, for instance at the first intersections I2 and I’

2 of the two waves with 
different polarizations in the -M direction. All avoided crossings appear at intersections of the empty 
lattice band structure. Similar results were found in two-dimensional phononic crystals with isotropic 
solid components [13] or holes in an anisotropic matrix [11], where avoided crossing is generally 
accompanied by a transfer of the polarization fromone band to the other. It is also noted that the 
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intersection point I2 can be tuned by changing the orientation of the anisotropic solid. A relatively  
large band gap could thus be expected when the frequencies of points I2 and M are the same. It can be  
remarked that when considering oblique incidence in a one-dimensional phononic crystal, coupling of 
the longitudinal and slow transverse waves can also result in a band gap occurring inside the BZ in 
addition to the high symmetry points [12]. 

3 Discussion 

For general phononic crystals composed of several different solids, the ratios of mass densities and 
elastic constants can hardly be made equal. Then Equation (1) is no longer valid and the empty lattice 
model should be modified.One possible direction is to consider the effective properties (effective mass 
densities and effective elastic constants) of the phononic crystal considered as an acoustic 
metamaterial. Effective properties have been widely investigated in recent years [15–17]. The band 
structure of the periodic metamaterial could then be reproduced partly by using effective parameters, 
although maybe only in the low frequency range where the long wavelength approximation is valid. 
This would then make it possible to construct an effective empty lattice model with effective mass 
densities and elastic constants.  
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