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Abstract 
 
We discuss two possible regimes of solitary wave formation in acoustic layered media. In the weakly 
dispersive limit, KdV-type solitons are formed, consisting of broad pulses with a width much larger 
than the lattice periodicity. Such KdV solitons are shown to exist even far from the weakly dispersive 
conditions. On the other hand, in the strongly dispersive regime, gap acoustic solitons are 
demonstrated. They are formed by a fast carrier wave inside the band-gap of the structure, near the 
Bragg frequency (whose propagation is not allowed in the case of linear waves), modulated by a wide 
envelope, whose width lies inside the gap. Gap solitons propagate slower than linear waves, or can be 
even reach a stationary non-propagating state within the medium. The parameters for a realistic 
acoustic medium supporting both types of solitary waves are discussed.            
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1 Introduction 

Sound wave propagation in periodic media has become increasingly popular in the last years, after the 
introduction of the ideas of sonic and phononic crystals. Exploiting the analogies with other type of 
waves (mainly electrons and light) in the corresponding media, many interesting effects as forbidden 
propagation bands (band-gaps), focalization, self-collimation, negative refraction, and many others 
have been proposed. The most of the studies have been done assuming low-amplitude waves, or linear 
regime, where the mentioned analogies apply. In linear systems, frequency is conserved. Intense wave 
propagation in nonlinear periodic media has been much less explored, particularly in acoustics [1,2]. 
Here we discuss localization phenomena related to sound wave propagation in a nonlinear medium 
with periodically modulated properties. Space dependent linear properties (as density, or sound 
velocity) introduce dispersion, which may be very strong at some frequency ranges. On the other hand, 
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propagation in a nonlinear medium leads to waveform distortion. This work explores several effects of 
strong dispersion in acoustic waves propagating in nonlinear media. It is known that the interplay 
between nonlinearity and dispersion allows for the propagation of solitary waves. Two type of solitary 
waves are discussed, KdV solitons occurring for weak dispersion, and gap solitons, envelope waves 
with carrier frequency within a stopband (gap) such that any linear wave turns out to be exponentially 
decaying. Their existence is based on different physical arguments.  
 
 

 
 
Figure 1 – Schematic model of a multilayered structure and waves propagating near the bragg regime. 

2 Model 

The propagation of high amplitude sound in a fluid is described by the Navier-Stokes equations, 
namely the continuity and Euler equations, completed by the equation of state, which in 1D read 
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where P = p0 + p is the pressure, v is the particle velocity (in general a vector, here a scalar), ρ = ρ0 + 
ρ' is the density. Note that p is called the acoustic pressure, and subscript 0 refers to equilibrium 
values. Apart from the convective nonlinearity in the Euler equation, also an acoustical nonlinearity 
appears in the state equation. Expanding up to second order, we deal with a quadratic nonlinearity 
which is dominant for most of the fluids 
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where, c0 the small-amplitude sound speed, and B/A is the nonlinearity parameter. Again, the medium 
parameters ρ0, c0 and B/A can be considered as space-dependent (periodic in the case of a crystal). 
Here we will consider only c0 as a space dependent parameter, the analysis is easily extendable to 
other cases.  
Under some assumptions [3] Eqs. (1-2) can be written in the form of a nonlinear wave equation, the so 
called Westervelt equation, which is more convenient for the analysis, 
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The Westervelt equation is still valid for inhomogeneous media, whose properties are space 
dependent. Here we consider that the medium is a one-dimensional periodic structure, consisting of 
layers of elastic isotropic materials of two types, periodically distributed (along the propagation axis), 
with thickness di (i = 1, 2), being ci the velocity of the sound wave in the i-th layer. The structure is 
periodic with period (lattice constant) d= d1 + d2. Such a structure is often called an elastic superlattice 
(SL). 

The dispersion relation, or band structure, of the multilayer can be expressed analytically. It is given 
by the so called Rytov formula [4] 
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Figure 2 shows the dispersion relation given by Eq. (4) with dashed lines, where the appearance of 
different propagation bands and bandgaps between them is observed. Four propagation bands are 
shown. 
 
 

 
Figure 2 – Band structure obtained for a water-glycerol multilayer with the following parameters: d1=1 

cm, d2=0.4 cm, c1=1483 m/s, ρ1=998 kg/m3, c2=1920 m/s, ρ2=1260 kg/m3. Red and blue curves 
correspond to the predictions of the coupled mode theory.   

 
A wave-packet propagating in the layered medium will experience the effects of nonlinearity and 
dispersion. Depending of the frequency, is possible to obtain solitary wave propagation regimes under 
two different regimes, as discussed in the following sections.  

3 KdV solitons 

Such propagative solutions correspond to broad localized perturbations (with a typical width much 
larger that the lattice constant) that propagate keeping its shape in the small wavenumber region of the 
dispersion relation [4]. Using travelling coordinates, Westervelt equation can be converted into the 
Burgers equation, as is well known in the literature [3]. To describe a layered medium, this equation 
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includes an additional cubic dispersion term, which result from the asymptotic expansion of the Rytov 
dispersion relation at low wavenumbers. In particular, Eq. (4) takes the form ω = c0k+bk3, where  

 c0 =
dc1

2c2
2

d2c1
2 + d1c2

2 , b = d
2

24
c0     (5) 

are the linear sound velocity in the layered media and the dispersion coefficient. The corresponding 
evolution equation can be cast then in the form of the well-known KdV equation 

 ∂v
∂t
− c0 +βv( )∂v

∂x
+ b ∂
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= 0  . (6) 

Equation (6) is known to possess exact solitary wave solutions in the form  

  p(x, t) = Asech2 γ (x −Vt)( )  . (7) 

An example of a typical KdV solitary wave, is shown in Fig. 3, where the numerical solution of the 
full nonlinear acoustic ecuation system Eqs. (1) is compared with the numerical solutions of the 
derived KdV equation, Eq. (6).   

 
Figure 3 – KdV solitary wave in the layered medium with c2/c1=0.1. 

 
The presented KdV-like soliton exist only for a particular set of conditions. In general, the dispersion 
near the band gap cannot be accurately described by the KdV dispersion. Furthermore, in case of high-
amplitude/low-width solitary waves, the soliton spectrum can reach higher bands, that are inexistent in 
the KdV model. Here, we have briefly presented the existence of solitons when its width is 
comparable to the lattice constant. Figure 4 shows four examples of propagating localized waves with 
different amplitudes. As can observed, as the soliton amplitude increases its speed increases and its 
width reduces, as is commonly observed in other solitary waves. However, for high amplitude 
solitons, in which the width of the localized wave is of the order of the lattice constant, there exist 
remarkable differences with the continuum KdV approximation. In these simulations, the initial 
excitation is the KdV solution. Thus, for the low amplitude regime (Fig. 4(a)) the soliton solution 
matches the excitation and propagates without changing its shape, amplitude and velocity. However, 
for higher amplitudes (Fig. 4(b, c)), it can be observed that the KdV soliton is not the exact solution: 
the solitary wave breaks into other wave-packets plus an oscillatory tail that its left behind. Finally, in 
the regime where the width of the soliton spectrum extends over the band-gap and up to the second 
band, i.e. for very localized waves waves (Fig. 4 (d)), the solitary wave suffers from a process of 
radiation 
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Figure 4 – Examples of KdV solitons for different amplitudes. 

4 Gap solitons 

Gap solitons are wave packets with a carrier frequency inside the bandgap (where linear waves can not 
propagate) modulated by a broad envelope [6], and therefore different from KdV solitons. In order to 
demonstrate the existence of gap solitons in acoustic layered media, we follow a usual procedure, by 
deriving a simplified system of coupled-mode equations which describe the evolution of the envelopes 
of the first and second harmonics (higher harmonics are ignored in this approximation). Near the band-
gaps, waves are strongly scattered backwards, therefore the acoustic field can be expanded as a sum of 
forward (An) and backward (Bn) propagating components for each harmonic 

p x, t( ) = An (x, t)e
iknz−inωt +

n=1,2
∑ Bn (x, t)e

−iknz−inωt  

and assume that the velocity in the medium is modulated as c(x) = c0 +Δcsin 2kBx( ) , where kB = π/d 
denotes the wavenumber at the bragg frequency (at the center of the gap). The slow envelopes obey 
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where vj are group velocities,  mn = Δc / c0( )kn / 2  are the modulation parameters (for n=1,2), 

Δkn = kn − nkB are the detunings with respect to the Bragg resonances and γn = β / ρ0c0
2( )2k1 / kn  is the 

nonlinearity parameter. Linearizing, it is straightforward to obtain the dispersion relation in a very 
simple form. For the first band gap it reads 

ω =ωB ± m2 + c0
2 kB − k( )2      (9) 

and analogously for the second bandgap. In Fig. 2 the dispersion relations given by Eq. (9) are shown 
together with the exact solution for a multilayer. Note the validity of Eq. (9) to describe the dispersion 
of the system around the bragg frequencies.  
 
Equations similar to Eq. (8) have been derived by Conti et al. [7] for light propagation in periodic 
media, where gap solitons have been demonstrated. We show here the analogous solutions for the 
acoustic field. We have solved Eqs. (8) for an incident pulse with frequency inside the first bandgap 
(but near the lower band). The result is shown in Fig. 5, which show the wave amplitude in a space-
time diagram. The wave reaches the periodic medium from the bottom, and is partially reflected and 
partially transmitted. The medium of incidence is linear, and therefore the second harmonic is not 
present in the wave incoming in the nonlinear periodic medium. In the medium, a localized 
wavepacket is excited, with first and second harmonic components, both propagating at the same 
group velocity. The corresponding solution is a gap soliton or simulton.    
 

 
Figure 5 – Gap solitons obtained from numerical solution of the acoustic coupled mode equations for 

m=1 and Δk = −0.9.  

5 Conclusions 

Two type of solitary waves have been predicted for acoustic multilayers composed by alternating fluid 
layers of different properties. These solutions have been studied by deriving a Korteweg-de Vries 
(KdV) and coupled-mode equations respectively.  
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