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Abstract

Excessive vibrations in the work environment not only harm exposed workers but can also affect the integrity
of building structures. This problem was detected in a wine cellar in Alijé, Portugal, where a concrete slab is
driven to resonance by two vibrating hoppers. In order to address the problem, a strategy combining physical
modelling techniques and in-situ vibratory measurements have been developed. The general objective was
first to reproduce the qualitative trends observed and then to assess the effectiveness of the proposed
solution. The strategy developed here allowed to study how to decrease the vibration amplitude without
making structural modifications on the slab, nor serious changes to the vibrating equipment.

1 Introduction

The Gran Cruz Winery is an industrial unit dedicated to centralize the production, storage and treatment of
wines from Douro and Porto, located in northwest Portugal in Alijo. The project has represented a significant
investment in the wine industry by including state-of-the art architectural and technological solutions for the
transformation of grapes to wine ready for the market. For the reception and distribution of the harvested
grapes to other equipments, the installation is equipped with two large vibrating hoppers. However, their
operation has rapidly induced excessive floor vibrations so that their practical use has been severely limited.
Indeed, the vibration problem is particularly critical for the installation since both hoppers are mounted on a
flexible cantilevered concrete platform, with area of 150 m? and 30 cm thick, at 8 metre above groundfloor.
The equipment has therefore been operated under sub-optimal conditions and until recently, an empirical
but safe solution has consisted in changing the supply frequency of the electric motovibrators of the hopper
in order to operate in a frequency range higher than the natural frequencies of the platform, thus decoupling
the excitation from the slab response. However, it has been inevitable for the winery to address the vibration
issue for both economical and safety reasons, and the main objective of this work is to describe the general
developed strategy for the design of a reliable and robust solution which has been implemented at Gran
Cruz very recently.

Of course, there has been many efforts devoted to the control of noise and vibrations in structures and today
useful guidelines support mechanical engineers towards the design of adequate solutions regarding the
equipement to protect [1]. Passive, active, semiactive, linear and nonlinear solutions have been developed



for vibration control but no universal solution currently exist. Indeed, the solving-capabiblities of every
technique remain strongly dependent on the specifities of the problem in view of the resonance frequencies,
the type of excitation and the environmental condition. For instance, it is well known that resonance problems
can be controled by tuned-mass dampers (TMD) but the use of such devices is ill-adapted to flexible systems
displaying a large number of modes and operating under broadband excitation.

The large vibrating hoppers of the winery can operate at several discrete frequencies by controlling the
rotational speed of the motors while the excitation amplitude can be regulated by acting on the relative
position of two eccentric masses inserted in the motors. Preliminary vibrational data has revealed the
occurence of large amplitude vibratory responses of the slab for several operating speeds, the slab being
driven to resonance phenomenom in the frequency range from 7 to 20 Hz. Among the technically applicable
solutions, one simple approach to the problem would consist in changing the excitation frequencies as
initially proposed by the hopper manufacters, so that the operating frequencies does not overlap with the
modal frequencies of the structure. Other possible approach could be to alter the modal behaviour of the
structure by structural modifications [2]. However, as already mentioned, the first solution is not sustainable
for the winery since the hoppers operate optimally for specific motor speed while architects would certainly
not give their permission for significant changes in the design and spatial options of their original plans.
Furthermore, altering the modes of such a large structure would remain very challenging. TMDs could also
be an efficient solution if only a single mode of the slab would become unstable. However, since resonance
occurs at different rotational speed of the motor, this would imply the design and delicate tuning of several
TMDs. The implementation of active control solutions [3] could also be attempted to adjust the operation
of the control device. They can actually better regulate the dynamics response of the system than passive
solutions but it is worth pointing that the practical feasibility of this modern control approach, using control
transducers and signal processing techniques, could be delicate in such operating environment besides its
rather complexity and expensive cost. It finally remains one common solution to takle efficiently the problem:
isolate the machinery from the fondation by elastic decoupling [4].

In the present paper, we present the overall strategy developed in this work for the design of a passive
solution to mitigate the resonance problem and demonstrate the practicability and effectiveness of an air
spring isolation system. The approach combined experimental and numerical modal analysis, physical
modeling and optimization of the isolator characteristics in view of ensuring the correct elastic decoupling of
the hoppers and the slab over the range of the motor excitation frequencies.

2 In-situ experiments

2.1 Vibratory reponses of the slab

A first serie of measurements was concerned with the assessment of the actual vibratory responses of the
slab under forced excitation. Accelerometers were glued on the slab at several critical locations, close to
the hoppers feet and near the slab corners. Measurements were performed by step-increasing the running
speed of the motor and for simplicity, one hopper only was operating at a time. For each velocity, ten
accelerations signals were averaged in the frequency domain and recorded on a Spectral Dynamics digital
acquisition board (Model SigLab 20-42). Fig. 1 displays the measured acceleration power spectra for one
hopper. Although the slab response remains rather small for low frequencies of excitation, there is a net
increase of the slab vibratory reponse in the frequency range between 12 and 18 Hz. From the vibrational
standpoint, this typically illustrates a resonance effect of the flexible slab which responds to the forcing of
the motor according to its natural modes of vibration. Therefore the objective of this work is to address the
resonance issue without making structural modifications on the slab, nor serious changes to the vibrating
equipment.

2.2 Experimental modal analysis

In a second stage, modal analysis measurements and computations have been performed to obtain detailed
information about the natural frequencies and shape of the structural modes of the slab. Measurements
consisted of driving-point transfer functions obtained by impact excitation at three locations on the slab
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Figure 1: Power spectral density of the acceleration measured at the hopper foot (left) and slab corner (right)
for the second equipment. Each color refers to one motor velocity.
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Figure 3: First six modes of the isolated slab
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Figure 2: Transfer functions obtained by impact )
contact points.

testing.

as well as other transfer functions performed between the hopper feet and slab. One accelerometer was
used for measuring the concrete slab response while impact excitations were performed by using a large
instrumented hammer to ensure a proper excitation of the low frequencies. The vibratory signals were
recorded on the digital acquisition board and acquisitions were 3s-long. Fig. 2 displays the acquired transfer
functions where several modes can be identified visually within the frequency range of the motor excitation.
The slab modal frequencies and associated damping values have then been identified by implementing
a sophisticated MDOF algorithm in the time-domain, the Eigensystem Realization Algorithm (ERA) which
has been recognized as being very effective for the modal identification of complex systems [5, 6]. In
essence, the algorithm is based on a state-space formulation of the system dynamics and attempts to
identify a linear mathematical model to match the impulse responses of the structure, first by combining a
set of free decay responses in the form of a generalized Hankel matrix and then, by using a singular value
decomposition to estimate the minimum order of the mathematical model. The last step of the algorithm
consists of computing the eigenvalues of the chosen minimum model from which the modal parameters of
the system are extracted. Fig. 4 displays the identified modal parameters of the slab as well as a comparison
between the measured and reconstructed impulse responses using the identified modal data to assess the
successfull modal identification. Six modes have been identified in the frequency range 5 to 25 Hz, and
two modes, slighlty damped, appear critical as they can easily contribute to the unsatisfactory operating
performance.

Finite-Element analysis of the slab has also been performed to complete the knowledge of the modal
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Figure 4. Modal identification results: (a) Identified modal parameters ; (b) Measured (green) and
reconstructed (red) impulse responses.
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parameters, namely the mode shapes and the associated modal mass. A Finite Element software was used
to construct the FEM model of the isolated slab and carry out the numerical computation. For illustration,
Fig. 3 presents the mode shapes of the first six modes stemming from FEM computations. As a result, the
modal parameters identified by modal analysis could then be used to feed a physical model, described in
the next section, for prediction analysis purpose.

3 Physical modelling of the hoppers/slab coupled system

3.1 Equations of the model

For a simple analysis, the vibrating hopper can be idealized by two rigid masses m; and ms connected by
an internal spring element, which responds to the external forcing provided by the motors. Its connection to
the foundation which is provided by the vibration isolator to design, can be modelled by a elastic device with
stiffness k, and damping coefficient ¢, and which contacts locally to the slab. To account for the complex
vibrational behaviour of the fondation, the slab can be viewed as a multi-modal flexible structure whose
modal parameters stem from the modal analysis. For simplicity, the equipment is assumed to vibrate in the
vertical direction which is actually the predominant direction of motion. Schematically, the system under
study is depicted in Fig. 5.

Figure 5: Modelling of the coupled system: the two vibrating hoppers (blue), the two elastic vibration isolators
(magenta) and the multi-modal flexible slab (gray).



In a modal framework, the dynamics of the sub-systems can be described by:

e For the upper mass of the hoppers, subjected to the forces induced by the internal mount and the
equipment motor excitation force f;(t) acting on hopper i (i=1,2) :

miXi(t) = —c, [X1(t) -V ()] ko [X1(t) — Y2 (8)]+f1(2) (1a)
miXo(t) = —cy [Xo(t) — Ya(t)] —ky [Xa(t) — Yo ()] +fo(t) (1b)
e For the lower mass of the hoppers, subjected to the forces induced by the internal mount and the
relative machinery/foundation displacement:
ma Y1 (t) = co[X1 () = Y1 () +ho[ X1 (8) = Y1 ()] = oY1 ()2 (we, , )~ Ks[Y1 (£)~Z (¢, , )]
maYa(t) = Cv[Xz(t) —Yz(t)]‘i‘ku[X2(t) —%(t)}—cs[%(t)—z(ﬂfcz, )~k (t)~Z (xc,, t)]
where z., and z., are the points where the hoppers contact the slab.
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e For the flexible slab, excited by the force f(z,y,t) provided by the isolators:
M, G () + Cn G () + kngn(t) = /Sf(x, y,t) op(z,y)dS n=1,....M (3)

where m,,, k, and ¢,, are the modal mass, stiffness and damping coefficient of mode n, with ¢, (x,y)
the corresponding mode shapes and ¢, (¢) its modal amplitude, and S the surface of the slab. The
external forces f(x,y,t) come from the isolator spring and damping forces originated by the relative
machinery/foundation motions at contact points z., and z.,. The associated modal forces are therefore
expressed by:

/Sf(m7y7 t) (bn(m?y) dS = f(x517y01’t)¢n(w61’y61) + f(xc27yc27t)¢n(x527y52) (4)

where _ _
F@ersyerst) = k| (e, yers V) = Yil®) | e[ 2 weye,t) = Vil0)] i = 1.2 )

with Y;(¢) and Z(z.,, y.,, t) the displacements of the lower mass of hopper i and the slab at the contact
point i respectively. The displacement of the slab in physical coordinates at location (z,y) can be
computed as:

M
Z(xvyvt) = ZQn(ﬁ)(bn(xvy) (6)

3.2 Dynamics of the coupled model

The dynamics of the coupled system can then be written into a compact matrix form consisting of (N =
N + 4) modal equations:




where D1, D,, E; and E, are coupling vectors for damping and stiffness effects given by:

Dl = _[ks(bl(ajcnycl)w"7k8¢M($617yC1)] ) D2 = _[k8¢1($027y02)7--- aks¢M(mczvycz)] (83.)
E; = 7['1{:8(251 (‘Tq ) ycl)7 sy ks¢M(Icl yYeq )]T , Eg= *[ksd)l (x(:fza yC2)a ceey stbM(ICQayCQ)]T (8b)

The matrice M is diagonal while K and C are full matrices due to the hoppers/slab coupling which highlights
that all slab modes are coupled through the contact forces. They respectively take the form:

C=0C,+ qu)(zcuycl) + qu)(zcmy@) (ga)
K - KS + ks¢(£613y01) + kS‘I’(J]C27y02) (gb)

where C, and K, are the diagonal matrices for the modal parameters of the slab and ®(z.,,y.,) are the
coupling matrices given by:

¢1(xci7yCi)¢1(xCi’yCi) ¢2(xciayci)¢1(xcmyci) ce ¢A4(xcvyc)¢1(x67yc)
@ = z z ; (10)
o1 (1‘(\7 y Yei )QbM (x(, ) y(l) P2 (.CCCL,, y('l)QSM (Ic, , ym) o oM ('Tc,, y Ye, )¢JW (.CCCL,, yci)

3.3 Modal behaviour of the physical model

It is well known that computations in the frequency domain can be insightful to study the effects of physical
parameter changes on the dynamical behaviour of a mechanical system. Indeed, a simple comparison of
the frequency response before and after the insertion of the vibrator isolator can provide a feel about the
efficiency of the elastic decoupling. Also, parametric computations can be performed to study the changes
in the modal frequencies and damping values as a function of the isolator's mechanical characteristics. In
a modal framework, this requires the knowledge of the modal parameters of the coupled system which are
essential ingredients to build the system transfer function, in terms of acceleration response, according to:

I‘Q,I‘,,

i\/: —Ww d)n ro)wn(rr) (1_1)

n(w? —w? 4+ j2ww, ()

where ry and r,. are the excitation and response locations respectively, w,, and ¢, the natural frequencies
and damping values of the system coupled modes and m,, and 1,, the corresponding modal mass and mode
shape. As classical in vibration analysis, one can assume harmonic solutions of the form w(t) = aei“~t for
free motion and then rewrite Eq. (7) in its first-order form to obtain a quadratic eigenvalue problem. The
eigenproblem is then easily solved by standard procedures, resulting in estimates of w,, and ¢,, as well as
the eigenvector a. The mode shapes of the coupled system «,,(r) in physical space can then be computed
by modal recombination of the original sub-system mode shapes as:

7/)71 Zaﬂbn U Za3¢m (12)

where ¢, (r) and ¢7"(x.) = 1 are the modeshapes of the slab and the four rigid masses respectively. Once
the eigenvectors are known, the modal mass of the coupled system can be estimated by:

m,, = diag(a” Ma) (13)

where M referred as to the mass matrix of the coupled system of Eq.(7). Fig. 6 displays three transfer
functions computed in this way from the modal parameters obtained by modal analysis. As seen, the model
reproduces the general trends of the modal measurements plotted in Fig.2 but no perfect matching between
experimental and computed transfer functions have been achieved. There is several reasons to explain
these discrepancies. There are actually large uncertainties regarding the values of the masses m; and
mo of the upper and lower parts of the hopper as well as on the surface density of the concrete installed
at the winery. Also, no information has been provided regarding the dynamical characteristics of the four
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Figure 6: Slab driving-point transfer functions  Figure 7: Optimal characteristics of the isolator
computed by the physical model. stemming from the minimization of Eq.(14).

internal flexible mounts (model Evidgom 810784) separating the two parts of the hoppers. Some errors may
also have occured during the modal identification procedure since it still involves the user interaction for
the determiniation of the order of the model. However, the model - even if not perfect - appears sufficient
to investigate the attenuation provided by the vibration isolator as a function of its stiffness and damping
properties.

4 Optimization of the isolator characteristics

The characteristics of the isolator have been sought by devising optimization strategies aiming at maximizing
the effectiveness of the isolation between the hopper mass excited by the motor and the slab response at
several critical locations. From the computations of the transfer functions with and without the isolator, given
by Eq.(11), we can define the following function error (s, ¢5) to be minimized by the stiffness and damping
values of the isolator, k, and ¢, respectively:

w1 <wlws w1 <wlws
E(km cs) = §

Jj=1

3( max (\f[(mcl,xsj,w,ks,csﬂ) max (fI(xCQ,a:sj,w,ks,cs)D)
(14)

w1213§w2(‘H(x01)m8j7w7 kSa cS)') w1?g§w2(‘H($027$83‘7w7 ksvcs>|)

where ﬁ(xci,ms_j,w,ks,cs) and H(x.,zs,,w,ks,cs) are the transfer functions for acceleration
response between hopper i and the slab location x;, with and without the vibration isolator
respectively, and w; and w. the lower and upper limits of the frequency range considered in the
optimization.  As illustrated in Fig.7, minimization of this function is achieved using parameters
ks = 5.5x10* N/m and ¢, = 20 Ns/m thus ensuring the optimal decoupling according to Eq.(14). As one
would expect, the optimal damping value corresponds to the limit of the search domain of the optimization
while the optimal stiffness is a low value, corresponding of nearly 1 Hz natural frequency. This is indeed
consistent with the rule stating that, for rigid foundation, the larger the ratio of operating and resonance
frequencies is, the larger the success of the solution will be. Fig. 8 displays a comparison of the transfer
functions before and after the insertion of the “optimal” isolator. Looking at the amplitude of the vibratory
responses, it can first be seen the effective large attenuation provided by the isolator, 19 dB in average
over the frequency range of interest. Indeed, the isolator acts as a mechanical lowpass filter and controls
not only the first problematic mode but also all other higher-order modes of the coupled system. Other
relevant aspect of the proposed solution is the strong coupling of the isolator with the system for the lowest
mode of the original configuration, highlighted by the frequency split around the first normal mode, while
the modal frequencies of higher modes remain unaltered as one would expected for elastic decoupling.
The frequency split can be easily explained by the insertion of the isolator since it intrinsically adds a new



degree of freedom and thus a new resonance to the dynamics of the coupled system. For the corresponding
operating frequency, this can be particularly problematic during operation but fortunately, the model does not
predict large difference in vibration amplitude for this running speed between the controlled and uncontrolled
configuration.
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Figure 8: Computed transfer functions before (dash) and after (solid) the insertion of the isolator with

characteristics defined by the minimization of Eq.(14). Excitation is on the upper mass of one hopper while

response is given for three critical locations on the slab. Legend is the same as in Fig. 6. The vertical gray
lines bound the frequency range considered in the optimization procedure.

5 Practical implementation and conclusions

Bridging the gap between the theoretical characteristics and the available commercial solutions is usually a
delicate task even if manufacturer catalogues provide a large variety and type of solutions. If steel-spring
axial isolator appears as a rugged and reliable solution for the practical realisation, the major difficulty
here comes from the low stiffness value of the isolator to design which inevitably leads to very large static
deflection for conventional springs. Other limitation is concerned with their height-to-width ratio which affects
their axial stability, especially for such low frequencies. One commercial solution which can approach the
requirements is air spring systems which have successfully solved vibration problems in many applications,
including on vehicular suspensions. Air springs provide low frequency and zero-static deflection and can
ensure constant operating frequency, even under varying load, by simple adjustment of the height of the
mount through air supply control. We decided to implement a solution based on four air spring systems
(see Fig. 9) capable of 2 Hz natural frequency (CDM AIR Cushion 6”x 2), uniformly positioned within the
equipment for dividing the load among the isolator and attached through some intermediate frame (see Fig.
10). Double convolution bellows have been preferred to gain axial stability and external mechanical stops,
mounted in compression against the equipment, have been designed to increase the low damping of the
mounts through friction and also reduce lateral displacements. Finally, soft elastic layers have been inserted
between the isolator end retainer and the slab to decouple them on the whole surface of contact.

The pratical realisation has been implemented for one hopper of the winery and vibratory measurements
have been recently performed at Gran Cruz. Table 1 presents preliminary results regarding the measured
vibration amplitudes, before and after the installation of the isolator. As seen, the installation of the solution
has been very successful, resulting in a net decrease of the vibration amplitude of about 26 dB for the
measured motor running speeds.
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Figure 9: Example of CDM air cushion mounted on  Figure 10: Anti-vibration solutions installed at Gran

the equipment. Cruz Winery.
Uncontrolled Controlled Uncontrolled Controlled
velocity 4 114 dB 86 dB velocity 4 115dB 78 dB
velocity 10 101 dB 82 dB velocity 10 114 dB 82 dB
(a) Left slab corner (b) Right slab corner

Table 1: Mean acceleration (dB ref. 1e-6 m/s?) measured at two locations on the slab with one hopper
operating for two critical running speeds. Results before and after the implementation of the solution.
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