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ABSTRACT  

The topic of vibration induced by rail traffic has received a special attention from the scientific 
community over the last decades. Thus, procedures to minimize the discomfort caused by an 
efficient railway network have to be proposed. In this paper a preliminary numerical study is 
presented about the mitigation of vibrations based in the introduction in the ground of a set of 
inclusions parallel to the railway track. Analysis in space-frequency, and frequency-wavenumber 
domain allowed concluding that the ground wave-propagation is strongly affected by the 
inclusions presence. Indeed, theoretical simple equations were derived and here proposed in 
order to allow the engineering tuning of the solution. 
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1 INTRODUCTION 
 
Vibrations induced by human activities, such as construction or traffic, have become a relevant 
concern of modern societies. Despite these kind of vibrations usually does not reach a level that 
can put in risk the structural safety of nearby facilities, the long term continuous exposition of 
population to vibrations is nowadays recognized as a public health problem [1, 2]. In this scope, 
transportation infrastructures in urbanized regions should receive special attention, namely in the 
case of railways, since the demand for increasing the railway infrastructure capacity in European 
countries is defined in the roadmap for railway 2050. The increase of railway infrastructure 
capacity will demand efficient solutions for vibration mitigation in order to achieve the societal 
acceptance of this goal. Actually, the topic of mitigation of vibrations induced by railway traffic has 
received a considerable attention by the technical and scientific communities, where different 
solutions have been proposed and analyzed. Usually, the distinct solutions are grouped in 
function of their location: i) at the source, as for instance introduction of resilient elements at track 
level, [3, 4]; ii) at the receiver, through the change of the dynamic of the receiver (building), [5, 6]. 
Alternatively to these two solutions, mitigation measures can be applied at the propagation path, 
trying by that way to minimize, or at least to change, the energy that impinges the facilities to 
protect. 
Despite of the recent advances in the topic, the exploration of the potential given by phononic 
acoustic materials, a specific class that can be framed within the so-called metamaterials, has not 
been extensively analyzed in this context yet. Actually, the propagation of almost all types of 
waves such as ultrasound, acoustic, elastic, and even electromagnetic and thermal in specific 
classes of periodic structures known as phononic or acoustic metamaterials, has drawn the 
interest of a large number of scientists and engineers [7]. The present paper aims to give a 
contribution for the development of vibration shielding solutions based in the introduction of 
periodic arrays of inclusions parallel to railway infrastructures. The paper starts with a deep 
analysis of the phenomena following a step-by-step approach, where the physical phenomena 
are analyzed in the space-frequency and in the wavenumber-frequency domains. 
 
 
 
2 BRIEF DESCRIPTION OF THE NUMERICAL APPROACH 
 
Transportation infrastructures, such as roads, railways tracks, pipes, can be often assumed as 
infinite and longitudinally invariant structures. In such conditions, if the assumption of linear 
response can be faced as reasonable, it is possible to achieve the 3D wave propagation solution 
by a 2.5D approach, where the equilibrium equations are formulated in the wavenumber-
frequency domain. This approach takes hand of the Fourier transformation regarding the 
longitudinal development direction and, by that reason, only the cross-section needs to be 
discretized. 
It the space-frequency domain, the fundamental wave propagation equation is given by: 

(𝜆 + 2µ)𝛻𝛻 ∗ 𝑢 − µ𝛻 ∗ 𝛻 ∗ 𝑢 + 𝜔2𝜌 ∗ 𝑢 = 0 (1) 

where 𝑢(𝑥, 𝑦, 𝑧, 𝜔) is the displacement vector, 𝜆 and µ are the Lamé’s constants and 𝜌 is the mass 
density of the elastic medium. Considering now the situation depicted in Figure 1, the 3D solution 
can be obtained through the combination of several space-harmonic solution through the 
application of a Fourier transform regarding the longitudinal direction. 
In the present study a 2.5D finite element approach is followed, since it allows dealing easily with 
complex geometries. A PML technique is applied to avoid the spurious wave reflection in the 
artificial boundaries [8] . Following the 2.5D FEM-PML approach and after the assemblage of the 
equations of each individual element, the equilibrium condition is established by the following 
equation: 

{[KFEM
g (k1)] + [KPML

g (k1, ω)] − ω2([MFEM
g

] + [MFEM
g (k1, ω)])}un(k1, ω) = pn(k1, ω) (2) 

Where k1 is the wavenumber, ω is the frequency, un is the vector of nodal displacements is the 

transformed domain, pn is the vector of external nodal loads in the transformed domain. The 

matrices [KFEM
g

] and [KPML
g

] are the global stiffness matrices of the FEM domain and of the PML 

domain, respectively, while [MFEM
g

] and [MPML
g

] are the corresponding global mass matrices. 



The solution on the space-frequency domain or in the space-time domain is finally obtained 
through inverse Fourier operations. Details about procedure can be found in following references: 
[10, 11] 
 
 
 
3 DYNAMIC RESPONSE OF THE SYSTEM WITH A SINGLE INCLUSION 

 

Buried inclusions in the ground change the wave propagation pattern and can be used as 
mitigation countermeasures. If these inclusions are installed with a certain array, constituting a 
periodic structure, a phononic metastructure can be achieved and shielding effect is expected to 
be reached in certain frequency bands. The dynamic response of the system with the presence 
of a single stiff inclusion was already addressed by Coulier et al. [12]. For this example, it is 
considered a homogeneous half-space with a circular shape inclusion (D=0.6 m) buried at 0.4m 
depth and with infinite development along the longitudinal direction as depicted in Figure 1. 
Superimposed in Figure 1 is a detail of the finite element mesh created to model the case study. 
Mechanical properties of the ground and inclusion are given in Table 1. 
 

 

Figure 2 – Illustrative scheme of the geometry of the cross section. 

Table 1 – Properties adopted for the different materials 

Material Density [Kg/m3] Young Modulus [MPa] ν [-] ζ [-] 

Soil 1700 116 0.33 0.001 
Inclusion 2700 4416 0.2 0.001 

 
Figure 3 shows the real part of the vertical displacement field generated by a harmonic point load 
located at ground surface and 10 m away from the inclusion. Results are presented for several 
frequencies, being shown in the upper row the reference scenario (without inclusion) and in the 
lower row the vertical displacement field generated in similar conditions but in the presence of the 
inclusion. From Figure 3 it is obvious that perturbation induced by inclusion presence is highly 
dependent on the excitation frequency. Actually, for the frequency of 25 Hz, the displacement 
field is almost not affected by the inclusion presence. The previous fact is also evident in Figure 
3a, where the insertion loss of the vertical (ILuz), defined by equation 3, is plotted.  
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Figure 3 – Vertical displacement for homogeneous media: a) 25Hz; b) 50Hz; c) 75Hz; Vertical 
displacement for a medium with one inclusion: d) 25Hz; e) 50Hz; f) 75Hz. 

 

ILuz = 20log10  (
|uz

ref(x,y,z,ω)|

|uz (x,y,z,ω)|
) (3) 

However, from Figure 4b and Figure 4c it is possible to observe that with the increase of the 
frequency an attenuation effect is observed by the inclusion presence, being more evident for the 
excitation frequency of 75 Hz. Furthermore, the insertion loss contours depicted in Figure 4 show 
the formation of a cone, inside which the attenuation effect is almost negligible, but it is relevant 
in the outside region. This effect was previously explained by Coulier et al. [12] and it is due to 
the waveguided effect provided by the stiffer inclusion when the wavelength of waves propagating 
in the longitudinal direction along the ground is shorter than the wavelength of bending wave 
propagation along the inclusion in free condition. 

 

To better discern this effect, Figure 5 presents the insertion loss in the wavenumber-frequency 
domain for the alignment located 20 m away from the load, i.e., at 10 m distance of the inclusion. 
The wavenumber is normalized by the shear wavenumber: 

K1[−] = k1 ∗
Cs

ω
 (4) 

where Cs is the shear wave velocity. 
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Figure 4 – Insertion loss [dB] of vertical displacement for single inclusion scenario and for 
frequencies of: a) 25Hz; b) 50Hz; c) 75Hz. 



Only the propagation region is represented in the figure, since for wavenumber 𝑘1 larger than the 
Rayleigh wavenumber only evanescent waves can propagate along the transversal direction. In 
the same figure, the free bending wave dispersion relationship of the inclusion is depicted by the 
black line. This dispersion relationship can be easily obtained assuming the inclusion as a 
Bernoulli-Euler beam: 

K1 = √
M ∗ ω2

EI

4 Cs

ω
 

(5) 

where M is the mass of the inclusion and EI is the bending stiffness. 

 

Figure 5 – Frequency-wavenumber of the insertion loss (dB) for the alignment 20m point 
away from the load (single inclusion). 

 

As can be seen, attenuation effects can only be achieved for wavenumbers 𝐾1 larger than those 
defined by the free-bending dispersion relationship of the inclusion. Actually, a detailed analysis 
of Figure 5 allows defining 3 zones of different behavior. The first zone corresponds to the 
frequency range up to the intersection between the dispersion relationships of the P-SV waves in 
the ground and of the free-bending of the beam. As shown by Coulier et al. [12], the limit of this 
frequency range is defined by equation 6, and for excitation frequencies lower than this limit there 
is no benefit induced by the inclusion presence. 

ωc = CR√
M

EI
 

(6) 

where CR is the Rayleigh wave velocity. 

However, passing the cut-on frequency defined by equation 6, positive insertion loss can be 
observed for values of 𝑘1 larger than those defined by equation 5, which means that the presence 
of the inclusion avoids the propagation of vibrations along the transversal direction when the 
propagating wavelengths in the ground and in that direction are shorter than the free-bending 
wavelengths in the inclusion. In the space-frequency domain this effect is noticeable by the 
formation of the cone discussed above, with an opening angle defined by: 

𝜃 = 𝑠𝑖𝑛−1 ( √
𝑀 ∗ 𝜔2

𝐸𝐼

4

∗
𝐶𝑅

𝜔
) (7) 



The definition of the cone shadow region is easily achieved taking into account the decomposition 
of the propagating wavenumber 𝑘𝑅 into the 𝑘1 and 𝑘2, representing waves propagating into 
longitudinal and transversal directions respectively. 

A third behavior zone is also detected in Figure 5, corresponding to frequencies larger than 80 
Hz. In this range it is possible to see that positive values of IL are only visible for larger values of 
𝐾1 as the frequency increases. This effect, not noticed in the studies provided by Coulier et al. 
[12] neither by Barbosa et al. [13], is due to the fact that in the present study the inclusion is 
buried, not achieving the ground surface. 

 
 
 
5 DYNAMIC RESPONSE FOR MULTIPLE INCLUSIONS: SINGLE ROW 
 
As previously mentioned, the consideration of multiple inclusions allows taking benefit of the 
meta-structure behavior. This effect is added to the mitigation effect induced by the presence of 
a stiffer inclusion in a host medium, which behavior was already discussed in the previous section 
Therefore, a new cross section is now considered, adopting two more inclusions parallel to the 
first one and in a center-to center distance of 1.2m, as shown in Figure 6. 
 

 
Figure 6 – Cross section with three parallel inclusion with a detail of the finite element mesh 

constructed. 
 
Figure 7 shows the insertion loss of the vertical displacement on the frequency-space domain for 
frequencies of 25 Hz, 50 Hz and 75 Hz. Scrutinizing the results for the 25Hz and 50Hz, and 
comparing with homologous results depicted in Figure 4, it is observed that the behavior pattern 
persists: i) for the frequency of 25 Hz the inclusion presence almost doesn’t affect the dynamic 
response of the system; ii) for the frequency of 50 Hz, there is a cone, inside which the mitigation 
of vibrations due to the presence of the inclusions is almost negligible. Despite the similarities of 
the dynamic response for single or for multiple inclusions when the excitation frequency is 50 Hz 
(Figure 7b), it should be mentioned that the presence of multiple inclusions allows to achieve 
higher values of IL, i.e., a more efficient mitigation is achieved when multiple inclusions are 
considered. A more interesting result is observed comparing Figure 4c and Figure 7c, i.e., the IL 
for the excitation frequency of 75Hz when single or multiple inclusions are considered, 
respectively. It is possible to see that in the first scenario (single inclusion) the area comprised 
inside the cone showed no attenuation on the vertical response (Figure 4c). On the other hand, 
for the case where multiple inclusions are considered, attenuation is also seen inside of the 
referred cone (Figure 7c). This fact must be related to some effect which is triggered only when 
more than one inclusion is adopted, proving the existence of a group behavior. 
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Figure 7 – Insertion loss [dB] of the vertical displacement for multiple inclusions scenario and 
for frequencies of: a) 25Hz; b) 50Hz; c) 75Hz. 

 

To better discern the group effect previously identified, an analysis on the frequency-wavenumber 
domain is presented for a receiver located in the alignment 20m away from the load application 
point. 
Figure 8 shows the IL for that alignment in the frequency-wavenumber domain, where it is 
possible to isolate four different regions. The first two correspond to the same ones already 
discussed for a single inclusion scenario (Figure 5), i.e., for frequencies lower than the cut-on 
frequency (see equation 6) no attenuation is observed, followed by the region where the wave-
guided behavior is provided by the inclusions stiffness. In addition to the previously identified 
regions a new one appears, where a considerable IL is perceived even for plane-strain conditions, 
i.e. 𝑘1 = 0. This expresses a new effect, resulting from a group interaction. This effect is 
responsible for the vibration attenuation in the region previously without attenuation, and can be 
called the “sonic-crystal” effect. The band gap induced by the sonic-crystal effect is delimited by 
the following equations: 

𝑓(𝜃) =
𝐶𝑟

2 ∗ 𝑑 ∗ cos 𝜃
 (8) 

𝑓(𝜃) =
𝐶𝑟

√2 ∗ 𝑑 ∗ cos 𝜃
 (9) 

where d represents the distance among two inclusions, and 𝜃 the incident wave angle.  

Limits defined for the bandgap are also illustrated in Figure 8 by the brown lines. 

 

Figure 8 – Insertion loss in the frequency-wavenumber domain (dB) for the alignment 20m 
point away from the load (multiple inclusions scenario). 



This band-gap effect is dependent on the distance between inclusions and on the wave 
propagation velocity of the host medium (assuming that the inclusions are much stiffer than the 
host medium). 
 
 
 
6 CONCLUSIONS 
 
In this paper, the authors presented a numerical study of a mitigation countermeasure which 
consists on a soil buried inclusions. For that task, a 2.5D FEM-PML approach was used to 
compute the 3D dynamic response. In this preliminary study, it was possible to identify the 
mechanical behavior pattern induced by the presence of a single inclusion. It was found that from 
a certain frequency value a wave-guided phenomenon is trigger, developing a cone which divides 
the space into two regions, one where is noticed an attenuation on the ground response and other 
where the vibration pattern is almost not altered. The open angle of the cone was found to be 
frequency dependent. For higher frequencies the wavelengths generated became very small in 
comparison with the buried depth of the inclusion and the energy starts to pass over it, inducing 
a loss of efficiency. An alternative scenario was considered where a row of three inclusions was 
adopted. This case showed an interesting efficiency improvement in comparison to the former 
scenario. Additionally to the previous attenuation mechanisms, a new one arises, caused by the 
interaction between the various inclusions, leading to positive insertion losses inside of the 
shadow cone. This group interaction is usually called the sonic crystal effect, and theoretical 
expressions are proposed to determine the frequency-wavenumber gap. The present study is still 
ongoing, where multiple scenarios taking advantage of the group interaction were constructed in 
order to evaluate the efficiency of the sonic crystal effect as a mitigation mechanism. It is also 
intended to evaluate the response for moving loads, simulating scenarios such as railway and 
road infrastructures. 
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