
VISCOELASTIC MATERIAL CHARACTERIZATION ON THE CONSTRAINED
FORM THROUGH EQUIVALENT PROPERTIES

PACS: 43.40.-r

Santos, Guido1; Monteiro, José Vitor1; Hinz, Mathias1; Cordioli, Júlio1; Pereira, Israel2; Futatsugi, Sideto2;
1Vibration and Acoustics Laboratory, Federal University of Santa Catarina
2Smart Structures, Noise and Vibration R&D - EMBRAER
Brazil
Phone: +55 48 3721 7215 (J. Cordioli); +55 12 3927 4819 (I. Pereira)
E-Mail: julio.cordioli@ufsc.br (J. Cordioli); israel.pereira@embraer.com.br (I. Pereira)

Keywords: viscoelasticity, cabin noise, equivalent properties, spectral methods.

ABSTRACT

This paper discusses a methodology developed for the characterization of viscoelastic materials (VEM) on its con-
strained form through equivalent properties for the ensemble (base material, VEM and constraining layer). At first,
the experimental procedure is presented, followed by the equivalent properties characterization through curve fitting
and optimization algorithms considering measured and numerical frequency response functions (FRF). Finally, spe-
cific properties for the VEM are obtained through spectral methods. Validation for the specific properties is presented.

RESUMO

Este artigo propõe uma metodologia para a caracterização do material viscoelástico na forma constrita a partir
de propriedades equivalentes do sistema formado pelo composto viscoelástico na forma constrita e material base.
Primeiramente, é descrito o procedimento experimental utilizado, seguido pela caracterização da estrutura com o
uso de propriedades equivalentes através do ajuste de curvas e algoritmos de otimização. Por fim, propriedades
dinâmicas do material viscoelástico são obtidas a partir do uso de modelos espectrais. É apresentada uma validação
para a caracterização específica do material viscoelástico.

1. INTRODUCTION

Cabin noise has been an increasingly tackled issue in aircraft design in the last decades. Being intense enough, it can
cause discomfort, interfere in communications and lead the crew to fatigue. Furthermore, in the long run, hearing
losses may be linked to frequent exposure to the mentioned conditions. In this scenario, passive vibration control
methods are widely used, where the application of viscoelastic materials (VEM) is one of the most cost-effective
solutions considering the properties of this class of materials.

Application of VEM in a constrained form to the airplane fuselage can enable high levels of damping, resulting
in a considerable noise reduction with relatively low mass addition. Nevertheless, a proper characterization for
the properties of these materials is fundamental when considering the development of numerical models able to
compute the behavior of complex structures with partial application of such a treatment.

The established methods, however, present limitations when performing the characterization of this kind of material.
The ASTM E756-05 [1] standard makes use, for example, of the half-power bandwidth method to estimate the
loss factor for the material, an ineffective procedure for cases of high damping. Another limitation for the standard



regards the measurement layout, where the constraining layer is removed, making the characterization for a lot of
VEM solutions unfeasible.

To overcome these limitations, this paper proposes a methodology for the characterization of structures with VEM
attached in a constrained form, based on the computation of equivalent properties.

2. EQUIVALENT PROPERTIES CHARACTERIZATION

The first step, inside the proposed methodology, is to obtain equivalent dynamic properties for the VEM in the
constrained form1. For this purpose, beam specimens are tested to get the response function. Numerical and
experimental FRF’s are fitted peak-to-peak by optimizations algorithms. Young’s modulus and loss factor are the
variables used in these algorithms where the goal is to match the peak shape.

2.1 Experimental Procedure

The test specimens are beams fully covered with VEM in the constrained form as shown in Figure 1. It’s recom-
mended to use a base beam thick enough to generate FRF’s with distinguishable peaks. The test specimen is fixed
to an impedance head, which is connected to a shaker. This layout (Figure 2) was chosen in order to add as little
mass as possible. The beam is excited by a random noise signal set in the spectrum analyzer and the responses are
measured in terms of force and acceleration. With this data, the point accelerance is calculated.

Figure 1: Test Specimen

Figure 2: Test Layout

2.2 Numerical FEM Model

The numerical model was developed using the finite element method and 1D beam bending elements with the
assumptions discussed in [3]. The model represents the testing specimen as a homogeneous beam with thickness
and mass given as the sum of each layer. Mass corrections were also applied to represent the measurement system
mass. The structural damping was applied to the system with the use of complex modulus approach.

2.3 Curve Fitting - Optimization Procedure

The equivalent dynamic properties are obtained by the curve fitting between experimental and numerical point
accelerances. At first, the Young’s modulus is estimated by matching the natural frequencies, which are the peak’s
frequencies of the experimental FRF and the square root of the numerical autovalues. This step cosiders an undamped
system and solves it through a modal analysis, therefore it has a low computational cost leading to a good initial
Young’s modulus to the next step.

1A complete description of the approach developed is discussed in [2]



Structural damping is then applied to the system, which is solved now by the direct method. The curve fitting is
done by optimization alghoritms where the main function is the difference between experimental and numerical
curve shapes and the variables are the Young’s modulus and loss factor. This curve fitting is done to each mode
separately, then one Young’s modulus and one loss factor for each natural frequency is estimated.

3. SPECIFIC PROPERTIES CHARACTERIZATION

This section presents two different methods used in this work for VEM specific properties characterization.

3.1 RKU Method

One of the first models developed and still used nowadays for a passive constrained layer beam is the one developed
by Ross, Kerwin and Ungar [4]. The model, commonly referred to by its acronym RKU, develops an approach to
obtain equivalent complex stiffness properties for a given configuration, and is used as a reference in this paper.
Some of its assumptions are:

• Energy dissipation occurs mainly through shear on the viscoelastic layer;

• The stiffness of the viscoelastic material is considerably lower than the elastic layers’ materials;

• The viscoelastic layer is assumed to hold both of the elastic layers a fixed distance apart2;

• The beam is simply supported at its edges (or long enough so that edges’ effects are negligible) and vibrates
in a natural frequency.

Consider the three layered composite illustrated in Figure 3.

Figure 3: PCLD Beam [4]

One may then express the total bending moment as:
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where B is the equivalent complex stiffness (EH3/12) and φ is the flexural angle of the base beam. Mii is the
moment exerted by the forces on the ith layer about its own neutral plane, Fi is the net extensional force on the ith

layer and Hi0 is the distance from the center of the ith layer to the composite beam neutral plane.

Through such a procedure one can find the equivalent complex stiffness (observing that Hi1 is the distance from the
center of the ith layer to the original neutral plane) as:
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2This is a critical assumption and is further discussed in this work for the cases in which it’s not valid anymore.



where D defines the neutral plane offset from its original position in the base beam, given by:

D =
E∗
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2 H2H21 +E3H3H31)

E1H1 +E∗
2 H2/2+g∗(E1H1 +E∗

2 H2E3H3)
(3)

and the shear parameter g∗ given by:

g∗ =
G∗

2
E3H3H2k2

n
(4)

where kn is the wavenumber (2π/λ , with λ being the wavelength) for the nth mode. For different boundary conditions
the first mode can be affected so corrections have to be made in the equations [5]. For the free-free case, focus of
this work, corrections are not required.

Observe that, through Equation 2 one can find equivalent properties for the given configuration and therefore find
natural frequencies and equivalent loss factors for each mode when properties are known for each layer. Alternatively,
the same equation can be used to find specific properties for the viscoelastic layer, considering that equivalent
properties were already obtained through the procedure discussed above (and properties for the elastic layers are
known).

As observed, the major restriction for the theory is the assumption considering that all layers partake the same
motion, that is, the flexural wavelength is the same in the three layers. For cases where the shear parameter (Equation
4) assumes small values relative to the unity, waves can propagate in the middle layer itself, so that the elastic layers
become uncoupled [4].

3.2 1D Spectral FEM

A different approach, discussed in [6], models wave propagation in a given laminate considering only a 1D model for
its cross section (A-B) as illustrated below, Figure 4, and is discussed in this paper as an alternative to the limitations
observed for the RKU model.

For the 1D mesh, one can consider a 3D displacement field given by:

Figure 4: Laminate Finite Element 1D Mesh: A-B [6]

d(x,y,z, t) = N(z)q0 exp(iωt − ikx) (5)

where N(z) is the shape function matrix and q0 the nodal DOFs vector. With this, the time average system’s kinetic
energy can be written as:

T =
ω2

4
q0

HMq0dxdy (6)

where M is the mass matrix given by:

M =
∫

z
ρ(z)NH(z)N(z)dz (7)

Going further, the time average strain energy can be written as:

U =
1
4

q0
HKq0dxdy (8)



where K is the stiffness matrix given by:

K =
∫

z
BH(k,z)D(z)B(k,z)dz (9)

where B is the strain-displacement matrix and D is the material constitutive matrix. The complete matrices’
formulation can be found in [6].

Equations of motion for the cross section can be formulated by inserting the kinetic and potential energies into the
time-average form of Lagrange’s equations. In general, the nonconservative form of Lagrange’s equations should be
used to account for dissipation through the cross section. Nevertheless, the following analysis adopts a simplified
approach in which the equations of motion are generated assuming that the laminate is conservative and that the
resulting cross-sectional strain energy distribution is used to estimate the power dissipated by the section (see [6]),
through a Modal Energy Deformation method.

The assumptions above are likely to be valid if the cross-sectional strain energy distribution of a given propagating
wave is not significantly modified by increasing levels of damping. Inserting the energy equations (8 and 6) into the
conservative form of Lagrange’s equations one can find the characteristic equation:

[Kr(k)−ω
2M]q0 = 0 (10)

where the subscript r indicates the real part of the materials’ stiffness is used when formulating K. For a specified
frequency ω , Equation 10 takes the form of a generalized quadratic eigenvalue problem for the wavenumber k.

Finally, one can compute loss factor values for a given wave type through its modal shape. With the eigenvectors φ

found solving Equation 10, one can rewrite it to be:

ηk =
∑n ηnφ HK(n)

r φ

φ HKrφ
(11)

The inverse characterization procedure with this formulation was designed in two steps. The first one aims to
obtain the viscoelastic layer’s stiffness value for a given mode. It starts computing a wavenumber using analytical
homogeneous beam theory and the equivalent stiffness property. In the sequence an optimization algorithm is used
to compute wavenumbers with Equation 10 iteratively (changing VEM stiffness values) until there’s a convergence
with the value calculated analytically. With the VEM stiffness known, flexural wave shape (computed with Equation
10) and equivalent loss factor in hands, one can simply use Equation 11 to compute the loss factor for the VEM
layer.

4. RESULTS AND FURTHER DISCUSSIONS

This section presents the results obtained for two different numerical cases of constrained VEM. The results below
are intended to validate the methods used and present the limitations for the RKU method.

4.1 Case 1

For the first case, the base beam and constraining layer are made of aluminum, with thickness of 2mm and 0.2mm
respectively. The VEM layer is also 2mm thick and has constant properties with frequency for reasons of simplicity
and model validation:

• Aluminum → E = 70GPa, ρ = 2700kg/m3, ν = 0.3, η = 0.01

• VEM → E = 0.1GPa, ρ = 400kg/m3, ν = 0.4, η = 0.7

A model with these properties was created and solved using Nastran®. Frequency response functions were then
used to compute equivalent properties as illustrated below:
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Figure 5: FRF fit and equivalent properties

Using these modal equivalent solutions and assuming the VEM properties unknown, RKU and SFEM procedures
were used to obtain its specific properties. The results are illustrated below.
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Figure 6: VEM obtained properties: Stiffness and Loss Factor

It’s visible that both of the methods present good approximations to the expected values. For the SFEM model,
stiffness values, however, are usually overestimated. This happens once, as discussed in the formulation, only the
real part of materials’ properties are being used to obtain the wavenumbers with Equation 10, so that wavenumbers
(the same way as natural frequencies) are underestimated.

4.2 Case 2

The second case is similar to the Case 1 with two modifications: an increase of 1mm for the VEM layer (total
thickness of 3mm) and a reduction of its stiffness by a factor of 10 (considerably reducing the shear parameter for
each mode, given in Equation 4):

• Aluminum → E = 70GPa, ρ = 2700kg/m3, ν = 0.3, η = 0.01

• VEM → E = 0.01GPa, ρ = 400kg/m3, ν = 0.4, η = 0.7
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Figure 7: FRF fit and equivalent properties

Same procedure was used to compute specific properties for the VEM layer:
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Figure 8: VEM obtained properties: Stiffness and Loss Factor

For this case, once again stiffness for the VEM layer was overestimated, but notice that RKU method was not able to
compute values for the 5th mode3, and the results for the 4th already start deviating from the reference considerably.
The flexural wave solution for the 5th mode is illustrated below:
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Figure 9: Waveshape, 5th mode - 9072Hz

3The inverse characterization with RKU results in a 3rd order polynomial equation. For the cases where the result has a physical meaning one
of the roots (stiffness) has to be positive. For the last mode in this case, all of the roots become negative.



The figure shows that two of the RKU assumptions are not valid anymore. First, the shear field in the VEM layer is
no longer a linear function along the thickness axis. Second, it becomes clear that the transverse displacement is not
the same for all of the layers, so that they are not hold a fixed distance apart as previously assumed.

5. CONCLUSIONS

The main purpose of this text was to present a methodology to estimate the Young’s modulus and the loss factor for
VEM in a constrained form, bypassing the difficulties imposed by the current ASTM E756 standard. Characterizing
the material with equivalent properties and later using spectral methods proved to be feasible for this purpose. Two
spectral methods were applied, RKU and SFEM. Two validation cases were presented where each of these methods
was analyzed and the results converged to the input data.

Although they achieve the main objective, the application of this methodology has some limitations. The use of a
homogeneous beam to obtain the beam’s dynamic properties is a source of errors. Besides that, when one tries to
characterize a VEM with a greater thickness and smaller Young’s modulus, the RKU method limitations become
clear and the proposed approach with the SFEM is an interesting alternative.

Finally, as mentioned, a more precise approach can be described in future works to take into account structural
damping when computing the wavenumbers with Equation 10 and avoid overestimating the VEM stiffness. Valid to
observe also that the validation cases studied here are simplifications considering constant properties for the VEM
material. Future works can comprise experimental cases as well as different spectral methods [7] that don’t require
the intermediate step of obtaining equivalent properties.
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