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ABSTRACT: Most theoretical papers on bowed-string instruments deal with isolated strings, pinned on fixed 
supports. In addition, the instrument body dynamics have been accounted using extremely simplified models of 
the string/body interaction through the instrument bridge. Such models have, nevertheless, been instrumental to 
the understanding of a very common and musically undesirable phenomenon known as the “wolf note” – a 
strong beating interplay between string and body vibrations. Cellos, bad and good, are particularly prone to this 
problem. In recent work our computational modal method has been extended to incorporate the complex 
dynamics of real-life instrument bodies, and their coupling to the string motions, using basic experimental 
dynamical body data. The string is modelled using its unconstrained modes, assuming pinned-pinned boundary 
conditions at the tailpiece and the nut. At the intermediary bridge location, the string/body coupling is enforced 
using the body impulse-response or modal data, as measured at the instrument bridge. In the present paper our 
computational approach is applied to a specific cello, which provided experimental wolf-behaviour data under 
several bowing conditions, as well as laboratory measurements of the bridge impulse responses on which the 
numerical simulations were based. Interesting aspects of the string/body dynamical responses are highlighted by 
our numerical simulations and the corresponding sounds and animations produced. 

1. INTRODUCTION 
In previous work we developed a modal method to deal with plucked and bowed strings [1-4], 
enabling an effective simulation of such systems, even when dispersive effects are significant. 
As in most other published work, our simulations assume a string pinned at the bridge and the 
nut, and therefore decoupled from the instrument body. Such approach proved adequate to 
obtain the typical motion patterns displayed by bowed-strings. However, because the bridge is 
assumed motionless, computations are obviously unable to cope with more subtle phenomena 
related to the coupling of string and body motions. 
More recently our computational method was extended to incorporate the multi-modal 
dynamics of a cello body, fully coupled to the string motions [5]. It is a hybrid approach, in 
the sense that a theoretical model of the string is coupled with dynamical body data, stemming 
from either simplified models or real-life experiments. 
The string is modelled using its unconstrained modes and, in contrast with our previous 
publications [1-4], assuming now pinned-pinned boundary conditions at the tailpiece and the 
nut. Then, at the bridge location, the string/body coupling is enforced using the body impulse-
response or modal data (as measured at the bridge). At each time step, the system motion is 
computed by integrating the string modal equations, excited by the modal-projected values of 
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the frictional bow force and also of the string/bridge contact force. The latter is obtained from 
the body motion at each time-step, as computed either (a) using the body impulse-response, or 
(b) from a modal model of the body. In the first method, the body dynamics are obtained 
through incremental convolution, a costly procedure which however enables the direct 
simulation of real bodies without any further modelling assumptions or simplifications. The 
second method allows for faster computations, but demands a computed or identified modal 
model of the instrument body. After a few demonstrative experiments and a detailed 
presentation, our computational approaches are illustrated for typical self-excited string 
motion regimes of a cello. In particular, simulations pertaining to the so-called “wolf notes” 
are presented. 

2. EXPERIMENTS 
In order to illustrate the coupling between the body of the instrument and the strings, some 
preliminary experiments were carried on a cello. Mobility frequency response functions were 
measured at the bridge in the horizontal direction, through impact excitation, with the bridge 
response being sensed by an accelerometer. The highest amplitude body resonance occurs at 
approximately 196 Hz with a relatively low damping ratio (= 0.7%) when compared with the 
majority of higher frequency modes which reveal damping ratios of the order of 2%. This 
high amplitude mobility peak is responsible for a particular effect to which these instruments 
(bad or good) are known to be very susceptible: the wolf note. It is an unpopular phenomenon 
among musicians since it gives origin to harsh and beating-like sounds turning proper musical 
execution extremely difficult at some positions along the fingerboard. Although unpleasant 
for the listener, the emergence of this effect is paradigmatic of the importance of the 
body/string interaction.  
Figure 1 depicts the typical amplitude-modulated waveform that characterizes the wolf note. 
In order to achieve this sound, the musician stopped the C2 string at a distance approximately 
L/3 from the bridge (where L is the length of the string), for this instrument, playing the G3 
note at roughly 196 Hz. Clearly, the beating phenomena displayed is the result of strong 
coupling between the string vibration and the main body resonance, which is related to the 
proximity of their frequencies. Shortening the effective length of the string by a small amount 
is enough to prevent the wolf note to develop.  
The wolf phenomenon has been the subject of several papers [6-10] the most generally 
accepted explanation being the one suggested by Schelleng [11], forty years ago. More 
recently the basis of this explanation has been revisited and further discussed by Woodhouse 
[12]. However, there are still a few aspects deserving exploration, such as the influence of the 
string dynamics in the portion between the tailpiece and the bridge. 
On the other hand, we experienced a dependence of the wolf beating frequency on the bowing 
parameters, an aspect which seems absent from the literature. Also, the emergence of wolf 
phenomena appears to depend somewhat on the time-history of the bowing parameters. These 
issues will be addressed in the present and future papers. 
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Figure 1 – Velocity time-history and spectrum of the bridge vibration, resulting from bowing 
on the C2 string at a fingerboard position approximately L/3 from the bridge (generating here 

a wolf note). 

3. COMPUTATIONAL METHOD 
 
3.1 Formulation of the String Dynamics 
 
Consider an ideal string of length L, linear density m and dissipation coefficient η , subject to 
a constant axial tensile force T and a force distribution F(x,t). The small-amplitude transverse 
motion ( , )sy x t  of the string is described by the classic damped wave-equation: 

 ( )
2 2

2 2 ,s s sy y yT F x t
t x t

η∂ ∂ ∂
= − +

∂ ∂ ∂
m  (1) 

where the wave speed is given by 2 /c T= m . Any solution of equation (1) can be 
formulated in terms of the string’s modal parameters: for modeshapes normalised at unitary 
maximum values modal masses are given as / 2nm L= ⋅m  ( )n∀ . Other modal parameters are 
the circular frequencies n n c Lω π= , damping values nζ and mode shapes 

( ) sin( )n x n x Lϕ π= , with n = 1, 2, …, N. The order N of modal truncation is problem-
dependent and must be asserted by physical reasoning. On the modal space the forced 
response of the damped string is formulated as: 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )M Q t C Q t K Q t t+ + = Ξ&& &  (2) 

Where [ ] ),,(Diag 1 NmmM L= , [ ] )2,,2(Diag 111 NNNmmC ζωζω L= , [ ] ),,(Diag 22
11 NNmmK ωω L= , 

are the matrices of modal parameters, { } 1( ) ( ), , ( ) T
NQ t q t q t= L  and { } 1( ) ( ), , ( ) T

Nt t tΞ = ℑ ℑL  
are the vectors of modal responses and generalised forces, respectively. The damping values 

nζ  are usually identified from experiments, however, they may eventually be theoretically 
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estimated. The modal forces ( )n tℑ  are obtained by projecting the external force field on the 
modal basis: 

 
0

( ) ( , ) ( )  , ( 1, 2,..., )
L

n nt F x t x dx n Nϕℑ = =∫  (3) 

The physical motions at any point of the string can be computed from the modal amplitudes 
( )nq t  by superposition: 

 
1

( , ) ( ) ( )
N

n n
n

y x t x q tϕ
=

=∑  (4) 

and similarly concerning the velocities and accelerations. For given external excitation and 
initial conditions, the previous system of equations can be integrated using an adequate time-
step integration algorithm. Explicit integration methods are well suited for the friction model 
used here. In our implementation, we used a simple Velocity-Verlet integration algorithm, 
which is a low-order explicit scheme. Note that, although (2-4) obviously pertain to a linear 
formulation, nothing prevents us from including in ( )n tℑ  all nonlinear effects arising in the 
system. Accordingly, the system modes become coupled by the nonlinear effects. 
For the present case, the external force field ( , )F x t  is due to the excitation friction force 

, ( , )s a cF x t  provided by the bow (which we will model in this paper as a single hair bow, 
although we can easily introduce excitation by a bow of finite width – see [4]), by the 
interaction force ( , )b bF x t  between the body and the string at the bridge and by the possible 
presence of a finger on the fingerboard. 
 
3.1.1 Friction Model 
The friction force arising between the string and the bow hair at location cx  of the string is 
given by: 

 
( , ) ( ) sgn( ) ; if 0

( , ) ; if 0

N
s c d c c c

N
a c S c

FF x t y y y
b
FF x t y
b

µ

µ

⎧ = − >⎪⎪
⎨
⎪ < =
⎪⎩

& & &

&

 (5) 

where NF  is the normal force between the bow and the string, Sµ  is a “static” friction 
coefficient (used during surface adherence) and ( )cydµ &  is a “dynamic” friction coefficient 
(used for sliding regimes). Here, the relative transverse velocity between the bow and the 
string is given by: 

 
1

( ) ( , ) ( ) ( ) ( ) ( )
N

c c bow n c n bow
n

y t y x t y t x q t y tϕ
=

= − = −∑& & & & &  (6) 

Recent research on friction models for bowed instruments [13] suggests the relevance of 
dynamical thermal phenomena in the tribology of rosin, which may induce hysteretic effects 
in the friction-velocity dependence. In spite of the unquestionable interest of such findings, 
we will use here the classical approach for sliding behaviour, as the present paper addresses a 
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different issue. We assume that ( )cydµ &  is a function of the relative bow/string velocity, and 
use the following model: 
 ( ) ( ) e cC y

d c D S Dyµ µ µ µ −= + − &&  (7) 

where, 0 D Sµ µ≤ ≤  is an asymptotic lower limit of the friction coefficient when cy →∞& , and 
parameter C  controls the decay rate of the friction coefficient with the relative bow/string 
sliding velocity. The friction model (7) can be readily fitted to typical experimental data, by 
adjusting the empirical constants Sµ , Dµ  and C . 
The sliding behaviour, described by the first equation (5), does not cause problems for 
simulations, as this equation explicitly shows how the sliding force should be computed as a 
function of the sliding velocity. However, during adherence, simulation becomes more 
difficult. Indeed, the second equation (5) merely states a limiting value for the friction force, 
during adherence, and gives no hint on how ( , )a cF y t&  may be actually computed. This is 
because the adherence force depends on the overall balance of all internal and external forces 
acting upon the system, which are quite complex for multi-degree of freedom problems. Most 
friction algorithms deal with this problem through implicit numerical schemes, which can be 
quite expensive to run. In our approach, an explicit procedure is used at each time-step, as 
explained in [1]. 
 
3.2 Formulation of the Body Dynamics 
As previously explained, our method was implemented to simulate the influence of the 
string/body coupling using two different procedures: incremental convolution of a measured 
impulse response or through a modal model of the body dynamics. 
 
3.2.1 Incremental Convolution Formulation 

At the bridge, the string motion forces the cello body into vibration. The response of the body 
can be computed, at each time step i, by the incremental convolution of the time-history of the 
interaction force between the bridge and the string ( , )b bF x t  and the body impulse response 
function at the same point bx , according to equations (10) and (11). 

 
0

( , ) ( , ) ( )
t

b b b by x t F x h t dτ τ τ= ⋅ −∫    ;   
0

( , ) ( , ) ( )
t

b b b by x t F x h t dτ τ τ= ⋅ −∫ &&         (10,11) 

where ( , )b by x t  and ( , )b by x t&  are the displacement and velocity of the bridge at the contact 

point with the string, while ( )h t  and ( )h t&  are the displacement/force and velocity/force 
impulse response functions of the instrument body, measured at the bridge. 
 
3.2.1 Modal Formulation 

The response of the body of the instrument can be represented by a simplified modal model: 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )B B B B B B BM Q t C Q t K Q t t+ + = Ξ&& &  (12) 
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where [ ] 1( , , )Diag B B
B PM m m= L , [ ] 1 1 1(2 , , 2 )Diag B B B B B B

B P P PC m mω ζ ω ζ= L ,  [ ] ( )2 2
1 1( ) , , ( )Diag B B B

B P PK m mω ω= L , 
are the matrices of the body modal parameters, { } 1( ) ( ), , ( )

TB B
B PQ t q t q t= L  and 

{ } 1( ) ( ), , ( )
TB B

B Pt t tΞ = ℑ ℑL  are the vectors of modal responses and generalized forces, 
respectively. The modal forces ( )B

p tℑ  are obtained by projecting the string/body coupling 
force ( , )b bF x t  (see section 3.3), on the body modal basis. The modal parameters are 
identified from a single transfer function measurement at the bridge. This fact leads to a 
requirement that the modal mass matrix should be normalised by postulating all modeshapes 

( )B
p bxϕ  unitary at the bridge location. The physical motions at the bridge are then computed 

from the modal amplitudes ( )B
pq t  and velocities ( )B

pq t& by superposition: 

 
1

( , ) ( )
P

B
b b p

p
y x t q t

=

=∑ ; 
1

( , ) ( )
P

B
b b p

p
y x t q t

=

= ∑& &  (13,14) 

3.3 Formulation of the String/Body Coupling 
The coupling between the string and the body of the cello arises from the bridge/string contact 
force ( , )b bF x t  which is used in equations (2), (10), (11) and (12). In this paper we model this 
interaction by connecting the string to the bridge through a very stiff spring with some 
dissipation to avoid any parasitic oscillations of the coupling oscillator: 

 [ ] [ ]( , ) ( , ) ( , ) ( , ) ( , )b b bs b b s b bs b b s bF x t K y x t y x t C y x t y x t= ⋅ − + −& &  (15) 

where bsK  and bsC  are stiffness and damping coupling coefficients between the bridge and 
the string, and ( , )s by x t and ( , )s by x t& are the displacement and velocity of the string at the 
bridge. 
 
5. SIMULATION RESULTS 
We will focus on the movement of a cello C-string with a fundamental frequency of 65.4 Hz, 
and a linear density of m = 14x10-3 kg/m, stopped at the G3 note, with an effective string 
length of L’ = 0.3725 m. In order to achieve adequate computational convergence we have 
used 80 modes and a sampling frequency of 20000 Hz. A modal damping value of 0.1% was 
used for all modes (however, frequency dependent damping can be easily introduced with this 
method) and a string inharmonicity coefficient was introduced to provide more realistic 
simulations. Concerning the friction model, we chose to use a classic sliding law such as the 
one presented in equation (7), with µS = 0.4, µD = 0.2 and C = 5, which produced realistic 
results. For the adherence model a total value of Kf = 105 N/m as been used. As previously 
discussed, a near-critical value of the adherence damping term Cf was adopted [3,4]. The body 
data was obtained from the transfer function measured at the bridge - see [5]. The stiffness 
and damping constants values, bsK  and bsC , used for the string/body coupling were chosen in 
order to enable a very stiff connection, while keeping a satisfactory computational 
convergence. We used values of bsK = 108 N/m and bsC  = 100 Ns/m. In contrast with 
previous publications [5], the finger position is kept constant over the G3 note, where the wolf 
note should emerge, while the playing conditions, FN and bowy&  vary exponentially with time. 
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Figure 2 – Simulation of a cello C-string stopped at G3 with FN = 1 N and bowy& = 0.01 ~1 m/s. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Simulation of a cello C-string stopped at G3 with FN = 2 N and bowy& = 0.01 ~1 m/s. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Simulation of a cello C-string stopped at G3 with FN = 0.1~10 N and bowy& = 0.1 m/s. 

Figures 2 to 4 represent the bridge velocity time-history for different playing conditions, 
while the finger position is kept constant. The dependence of the wolf note beating frequency 
on FN and bowy& , can be clearly seen in these figures. As the bow velocity increases so does the 
wolf note beating frequency, while the opposite behaviour is seen for an increase of the bow 
normal force. 
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A fact that is also felt by musicians is the control that can be achieved over the emergence of 
the wolf note, by applying different bow velocities and normal forces combinations. In the 
example shown in Figure 2, the wolf note arises when bowy&  > 0.03 m/s and disappears when 

bowy&  > 0.3 m/s. If FN is doubled (Figure 3) the wolf note only emerges when bowy&  > 0.08 m/s. 
Interestingly, if bowy&  is kept constant at 0.1 m/s, the wolf note emerges and disappears at 
approximately the same time instant, for FN > 0.9 N and FN >3.5 N, respectively. 
 
5. CONCLUSIONS 
In this paper we continue to explore our bowed/plucked string modelling techniques which 
now incorporate the complex dynamics of real-life instrument bodies, coupled to the string 
motions. In our hybrid approach, a modelled string interacts with actual or synthesized body 
data, in the form of bridge impulse response functions or identified modes. Numerical 
simulations of a cello C-string subjected to varying playing conditions illustrate the 
interesting behaviour of wolf notes, in particular concerning the dependency of the beating 
frequency on the bowing parameters. 
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