
  

ON THE NUMERICAL COMPUTATION OF TRANSMISSIBILITY OF 

VIBRATION, ACOUSTIC AND VIBRO-ACOUSTIC RESPONSES 

Vasco M. N. Martins1, Miguel M. Neves2* 

1 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal 

{vasco.mnmartins@gmail.com} 
2 IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal 

{miguel.matos.neves@tecnico.ulisboa.pt} 

Resumo 

Nos últimos anos, observa-se um interesse crescente no uso do conceito de transmissibilidade para 

estimar respostas  de vibração, respostas acústicas ou/e respostas vibroacústicas. Apesar do já conhecido 

potencial e das limitações nas suas aplicações, há uma necessidade considerável de pesquisa sobre as 

diferentes maneiras de executar o cálculo numérico da transmissibilidade. Neste texto, o autor revê e 

discute alguns aspectos da computação numérica da transmissibilidade.  
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Abstract 

In recent years, it can be observed an increasing interest on the use of the transmissibility concept for 

estimation of vibration, acoustic or/and vibro-acoustic responses. Despite the known potential and 

limitation of its applications, there still be a considerable need for research on its different ways of 

performing the numerical computation of the transmissibility. In this text, the author review and discuss 

some aspects of the numerical computation of the transmissibility. 
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1 Introduction 

The dynamic transmissibility concept is well known in vibration and acoustic fields, but mainly in what 

concerns to a two degree-of-freedoms (DOFs) relation. Its generalization to a relation between multiple 

degrees-of-freedoms (MDOFs) – which are not necessarily aligned with one line–  is more recent.  

Initial attempts to achieve the mentioned generalization were found in Snowdon [1], Vakakis et al. [2] 

and Sciulli and Inman [3], Liu and Ewins [4], Varoto and McConnell [5], among others. First 

generalizations involving MDOFs are e.g. in [6-8], present a transmissibility matrix relating two sets of 

response positions.  

In acoustics and vibro-acoustic fields this generalization to MDOFs relations – defining a multipoint 

transmissibility – is a more recent development with few publications available in the literature. Among 

them are the works of Curling and Païdoussis [9], Tcherniak and Schuhmacher [10], Devriendt et al. [11], 

Guedes [12], Guedes and Neves [13-14], Neves et al. [15], Martins [16] and Vaitkus et al. [17]. 
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This transmissibility concept is of interest for many applications, in particular where one has technical 

difficulties in measuring the responses at some co-ordinates of the structure. It may be an alternative, 

when the transmissibility matrix of the original system can be evaluated or measured beforehand, case 

where it is to expect that in similar conditions one be able to estimate responses by measuring a few 

responses in accessible points, as described in Maia et al. [18].  

It is well known that in the classical two-point vibration transmissibility case, the displacement and force 

transmissibility expressions are identical (in modulus). For MDOF relations, the force and displacement 

transmissibility expressions are not strictly identical, as mentioned in [19] and explained in [20].  

In what concerns to published works in acoustic transmissibility, only a few are fully dedicated to it, 

while instead most of them appear in its applications e.g. in operational transfer path analysis (OTPA). 

Devriendt et al [21] applied a Finite Element based scalar pressure ratio transmissibility for an acoustic 

cavity. In the works Kletschkowski [22] and Weber et al [23] the authors perform identification of noise 

sources. Inspired on these works, Guedes and Neves [14] and Guedes [13] extended the concept to the 

2D case for noise source identification and reconstruction. Experimental work performed to validate the 

method, can be find in [24]. 

The need for faster Transfer Path Analysis (TPA) methods [25] resulted in the development of  

Operational TPA (OTPA or OPA) methods [26]. But soon, several authors described limitations and 

drawbacks of these methods (see e.g. [27]) which includes difficulties related to the transmissibility’s 

estimation, errors due to coupling between path, among others. In acoustic transmissibility applications, 

one can mention the works from Tcherniak [28] and Tcherniak and Schuhmacher [29].  

In section 2, authors start with a brief revision of the fundamentals from vibration, acoustic as well as 

vibro-acoustic transmissibility concept (in the frequency domain). A brief verification of the acoustic 

transmissibility relation is presented at section 3. A brief verification of the vibro-acoustic 

transmissibility relation in an acoustic tube with an elastic plate at end is presented at section 4 including 

an analysis on the cross-talk problem. Finally, in section 5, authors elaborate on a verification test to 

perform with the OTPA and present first results of a work that is in progress at the moment. 

2 Fundamentals 

Concepts like vibration, acoustic and vibro-acoustic transmissibility between sets of DOFs are concisely 

reviewed in this section. For a more detailed description [12, 14, 17] are recommended. 

2.1 Vibration transmissibility between sets of DOFs 

For a linear viscoelastic solid, its structural response can be given by the following equilibrium equation 

 

 [𝑀𝑠]{ÿ(t)} + [𝐶𝑠]{ẏ(t)} + [𝐾𝑠]{y(t)} = {𝑓𝑠(t)},  (1) 

where [𝑀𝑠], [𝐶𝑠], [𝐾𝑠] are the mass, damping and stiffness matrices of the solid ‘s’, respectively; {y(t)} 

is the nodal displacement vector; {𝑓𝑠(t)} is the excitation load vector and  t is the time. 

A steady-state response in case of harmonic excitation is obtained from 

 

 [[𝐾𝑠] + 𝒊𝜔[𝐶𝑠] − 𝜔2[𝑀𝑠]]{𝑌(𝜔)} = {𝐹𝑠(𝜔)} ↔ [𝑍𝑠(𝜔)]{𝑌(𝜔)} =  {𝐹𝑠(𝜔)},  (2) 

where [𝑍𝑠(𝜔)] is the dynamic stiffness matrix and 𝜔 the excitation frequency being applied. The response 

can be obtained using a receptance matrix [𝐻𝑠(𝜔)] in the following form 
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 {𝑌(𝜔)} = [𝑍𝑠(𝜔)]−1{𝐹𝑠(𝜔)} = [𝐻𝑠(𝜔)] {𝐹𝑠(𝜔)}. (3) 

For the problem, it is usual to define some sets of DOFs. E.g., the K set composed of coordinates where 

the responses are measured, and the U set composed of coordinates where the displacements are 

unknown, while the A set of coordinates where loads are applied, (can therefore include part of U). The 

remaining set to be considered is the C one, which encompasses the remaining coordinates of the solid. 

Using the receptance matrix it is possible to relate the responses with the applied forces as 

 

 {𝑌𝑈} = [𝐻𝑠 𝑈𝐴]{𝐹𝑠 𝐴} ,  (4) 

 {𝑌𝐾} = [𝐻𝑠 𝐾𝐴]{𝐹𝑠 𝐴} ,  (5) 

which allows to introduce a transmissibility matrix, that relate the measured responses with the unknown 

responses through the A set, as in the following relation 

 

 {𝑌𝑈} = [𝐻𝑠 𝑈𝐴] [𝐻𝑠 𝐾𝐴]+{𝑌𝐾} = [TUK
A (s)

] {𝑌𝐾}. (6) 

For the pseudo-inversion (+), one observe that in number of DOFs the set K needs to be greater than or 

equal to the dimension of the set A (i.e. in number of DOFs). If the sets have the same size, the pseudo-

inversion turn into a regular inversion.  

2.2 Acoustic pressure transmissibility between sets of DOFs 

Much alike the vibrational case of the previous section, a linear acoustic fluid, with no flow, can be 

modelled, in a steady-state regime by 

 

 [[𝐾𝑓] + 𝒊𝜔[𝐶𝑓] − 𝜔2[𝑀𝑓]] {𝑃(𝜔)} = {𝐹𝑓(𝜔)} ↔ [𝑍𝑓(𝜔)]{𝑃(𝜔)} =  {𝐹𝑓(𝜔)},  (7) 

where [𝑀𝑓], [𝐶𝑓], [𝐾𝑓] are the mass, damping and stiffness matrices of the acoustic fluid ‘f’, respectively; 

{𝑃(𝜔)} is the nodal pressure vector; {𝐹𝑓(𝜔)} is the excitation load vector and  𝜔 is the excitation 

frequency. The steady-state pressure {𝑃(𝜔)} can therefore be obtained using a frequency response 

function (FRF) of the acoustic system [𝐻𝑓(𝜔)] 

 

 {𝑃(𝜔)} = [𝑍𝑓(𝜔)]
−1

{𝐹𝑓(𝜔)} = [𝐻𝑓(𝜔)] {𝐹𝑓(𝜔)}. (8) 

By taking into account that no other acoustic sources exist, besides the ones in set S, meaning that  

 {𝐹𝑓 𝐾 }
 
,  {𝐹𝑓 𝑈 }

 
, {𝐹𝑓 𝐶  }

 
 are zero, one obtains: 

 

 {𝑃𝐾  𝑃𝑈 𝑃𝑆 𝑃𝐶  }𝑇 =  [𝐻𝑓 𝐾𝑆  𝐻𝑓 𝑈𝑆  𝐻𝑓 𝑆𝑆  𝐻𝑓 𝐶𝑆  ]
𝑇

 {𝐹𝑓 𝑆 }
 
.  (9) 

which allows to relate {𝑃𝑈} with {𝑃𝐾}  in the presence of a single source. The superscript ‘T’ means 

transpose. This relation comes in the form of acoustic pressure transmissibility [TUK
S (f)

]  

 

 {𝑃𝑈} = [𝐻𝑓 𝑈𝑆] [𝐻𝑓 𝐾𝑆]
+

{𝑌𝐾} = [TUK
S (f)

] {𝑃𝐾}. (10) 
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2.3 Vibro-acoustic transmissibility between sets of DOFs 

For the acoustic-structural coupled problem, the nodal pressure {𝑃(𝜔)}  from the acoustic medium 

manifests in the solid according to the following relation: 

 

 [[𝐾𝑠] + 𝒊𝜔[𝐶𝑠] − 𝜔2[𝑀𝑠]]{𝑌(𝜔)} =  {𝐹𝑠(𝜔)} − [𝐴]{𝑃(𝜔)} ,  (11) 

with [𝐴] being the coupling matrix which transfer the pressure from the acoustic medium to the structure. 

A more detailed view of the topic can be found in [30, 31].  

The fluid-structure interface (FSI) condition is given by: 

 

 
𝜕𝑝

𝜕𝑛
= −𝜌𝑦̈𝑛 (12) 

conveys the displacement at the boundary into the acoustic fluid, i.e: 

 

 [[𝐾𝑓] + 𝒊𝜔[𝐶𝑓] − 𝜔2[𝑀𝑓]] {𝑃(𝜔)} =  {𝐹𝑓(𝜔)} − 𝜔2 [𝐴]𝑇 {𝑌(𝜔)} .  (13) 

Combining the modified structural and acoustic finite elements (FE) from equations (11) and (13), one 

obtains 
 

 ([
𝐾𝑠 𝐴
0 𝐾𝑓

] + 𝐢ω [
𝐶𝑠 0
0 𝐶𝑓

] − ω2 [
𝑀𝑠 0

−𝜌𝐴𝑇 𝑀𝑓
]) {

Y(ω)

P(ω)
} = {

𝐹𝑠(ω)

𝐹𝑓(ω)
}. (14) 

This Eulerian FE/FE coupled vibro-acoustic system [30] models a Fluid-Structure Interaction (FSI) and 

can ultimately be expressed as 

 

 ([𝐾𝐹𝑆𝐼] + 𝐢ω[𝐶𝐹𝑆𝐼] − ω2[𝑀𝐹𝑆𝐼]){X(ω)} = {𝐹𝐹𝑆𝐼}  ↔   {X(ω)} = [𝐻𝐹𝑆𝐼]{𝐹𝐹𝑆𝐼} (15) 

where [𝑀𝐹𝑆𝐼], [𝐶𝐹𝑆𝐼], [𝐾𝐹𝑆𝐼] are the mass, damping and stiffness matrices of the coupled vibro-acoustic 

problem, respectively; {𝑃(𝜔)} is the nodal pressure vector; {𝑌(𝜔)} is the nodal displacement vector; 
{𝐹𝐹𝑆𝐼} is the excitation load vector and  𝜔 is the excitation frequency. 

Now, if the same two regions from before are considered – K region, where the pressure responses are 

measured, and U region where the structural loads are applied (with consequent displacements of 

relevance) – one can write that 

 

 {𝑌𝑈(ω)} = [𝐻𝑈𝑈
𝐹𝑆𝐼]{𝐹𝑈(ω)}, (16) 

 {𝑃𝐾(ω)} = [𝐻𝐾𝑈
𝐹𝑆𝐼]{𝐹𝑈(ω)}. (17) 

The Figure 1 illustrates that this models involves a structure, an acoustic fluid and an interface between 

both. The vibro-acoustic transmissibility relating pressure with displacement responses is given by 

 

 {𝑃𝐾(ω)} = [𝐻𝐾𝑈
𝐹𝑆𝐼][𝐻𝑈𝑈

𝐹𝑆𝐼]−1{𝑌𝑈(ω)} = [𝑇𝐾𝑈
𝐹𝑆𝐼]{𝑌𝑈(ω)} (18) 

displayed as [𝑇𝐾𝑈
𝐹𝑆𝐼]. This transmissibility matrix will have dimensions nK x nU , corresponding to the 

number of coordinates in both sets K and U.  
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Figure 1 – Vibro-acoustic interaction depicted in sets of coordinates U, K and others C, for Y imposed 

excitation at structure and interface exaggerated to underline forces FSI between structure and interface 

FSI and FAI between acoustic medium and interface. 

3 On the contributions from acoustic transmissibility 

It is known that in presence of several sources, the OTPA contributions (S’
n) for a response on a given 

point differ from the corresponding TPA ones (Cn) by a term related with the respective cross-talk 

effects, assumed of order ε2 in some cases.  

 

 𝑆1
′ + 𝑆2

′ = 𝐶1
′ + 𝐶2

′ + 𝑂(𝜀2) (19) 

In order to verify the preposition that OTPA contributions differ from the TPA ones by the cross-talk 

effects, the following finite element model (Figure 2) was used.  

It considers two acoustic sources u1 and u2 producing spherical waves, and twelve symmetrically 

disposed pressure sensors, vA to vF . A receiver y at middle of the tube is considered as the reference 

point to analyse the Cn contributions. An anechoic boundary is applied in all boundaries. 

The dimensions for the box of the Figure 2, as well as the other properties, are presented in Table 1. 

Table 1 – Box dimensions and fluid properties. 

Property Value  

Length - L 

Width and Height - b 

Density - ρ 

Sound Speed - c 

4 m 

2 m 

1.21 kg/m3 

344 m/s 

 

 

Figure 2 – Side view of the proposed 3D model (box dimensions: Lxbxb) with anechoic boundaries 
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From this model, the matrices [𝑀𝑓], [𝐶𝑓], [𝐾𝑠𝑓] were computed, and from these [𝑍𝑓(𝜔)] is obtained and 

consecutively  [𝐻𝑓(𝜔)] using Eq. (7). 

 In this case, the spherical pressure waves being generated in a steady-state harmonic regime with an 

amplitude of 1 Pa, coming from the punctual sources u1 and u2. Then, the pressure values are measured 

directly from the twelve symmetric sensors vi and the receiver y. The simulated wave pressure response 

is displayed in Figure 3. 

 

 
 

Figure 3 – Pressure response (50 Hz) for a highly refined mesh (in color: blue is the minimum value 

and red the maximum value) 

Because it may be heavy to process computationally, a rule of tumble is to choose a refinement keeping 

in mind the frequency being analysed – in this analysis (50 Hz) – and that the number of elements per 

wavelength, longitudinally and transversely had to be at least 32. Here, 32 elements were considered 

longitudinally and 14 transversely. 

The TPA contributions from the excitation sources Cn for the receiver Y position are: 

 

 𝑌 = ∑ 𝐶𝑛 =𝑁
𝑛=1 ∑ 𝐻𝑛𝑌𝑈𝑛

𝑁
𝑛=1 . (20) 

The pressure at the receiver Y , can be estimated from the sensors Vi using the relation between the 

sensors and the sources, i.e.  {𝑉} = [𝐻𝑈𝑉]{𝑈} , by 

 

 𝑌 = [𝐻𝑌𝑈][𝐻𝑉𝑈]−1{𝑉}, (21) 

which essentially results in: 

 

 𝑌 = { 
𝐻𝑌𝑈1

𝐻𝑉1𝑈1
2 (1+𝜀 )

𝐻𝑌𝑈2

𝐻𝑉1𝑈1
2 (1+𝜀 )

} {
𝑉1

𝑉2
}. (22) 

where 𝜀 =
𝐻𝑉1𝑈2

𝐻𝑉1𝑈1

 is a cross talk measure from source 2 in the sensor 1. 

Now, one can estimate the contribution Sn based on measures at sensor Vi positions i from A through F 

and compare with “true” contribution Cn. This was done with  

 𝐶𝑛 ≈ 𝑆𝑛 = 𝑇𝑌𝑛𝑉𝑛. (23) 
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On the other hand, without pondering the influence of ε, if the separate sensor contributions are added 

one can do the following estimative for each point of the sensors (A,B, …, F): 

 𝑆(𝐴→𝐹) = 𝑇𝑌𝑉𝑉(𝐴→𝐹). (24) 

The values obtained from equation (24) for Sn are presented in Table 2. The “true” contribution Cn is 

“measured” at x=2 m while the estimates Sn are computed with values obtained from each sensor Vi at 

respective position i from A through F (see lines 3 to 8 of Table 2). The cross-talk due to the second 

source – quantified at column of ε – affects the estimate Sn.  

Table 2 – Contributions Cn and cross-talk levels ε at sensors vi of Figure 2. 

 Positions x(m) Cn (Pa) Sn (Pa) ε Sn-Cn (Pa) 

y -2 -0.0108 - - - 

vA -0.625 and -3.375 -0.0108 -0.0107 0.0267 8.5713e-05 

vB -0.75 and -3.25 -0.0108 -0.0103 0.0407 4.9923e-04 

vC -1 and -3 -0.0108 -0.0098 0.1138 9.9933e-04 

vD -1.25 and -2.75 -0.0108 -0.0142 0.2323 -0.0034 

vE -1.5 and -2.5 -0.0108 -0.0164 0.4054 -0.0056 

vF -1.75 and -2.25 -0.0108 -0.0233 0.6486 -0.0125 

u1 -0.5 - - - - 

u2 -3.5 - - - - 

 

As expected, the level of cross-talk ε decreases with the reduction of the distance of the sensor Vi to the 

sources. Indeed, with a sensor near of the source the cross-talk is not enough to change significantly the 

estimate obtained with the transmissibility. In this case, the verification of the numerical calculus is 

achieved with success, although a more embracing study shall be performed for a better understanding 

of the use of the finite element model for these predictions. 

In the Figure 4, is illustrated how the estimate S1+S2 differs from the value C1+C2 with the reduction of 

the distance of the sensor Vi to the sources. Small values of cross-talk like with sensors at vA resulted in 

a cross-talk ε of 0.0267 (i.e. with a log10 ε =1.57). The difference between the estimate S1+S2 and the 

value C1+C2 is small in positions A, B and C, but for D, E and F is no more negligible as is evident from 

the Sn-Cn line. 

 

Figure 4 – Plot of C and S versus the cross-talk parameter ε (for a frequency of 50 Hz) 
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4 Verification of scalar vibro-acoustic transmissibility 

In this section, the main purpose is to verify the numerical computations used to estimate the vibro-

acoustic transmissibility with a finite element model. The verification consists in the comparison of the 

transmissibility results obtained via pressure/displacement ratio (using simulated measures of pressure 

and displacement) with the proposed frequency response matrix method indicated by (21). 

For this verification, let us consider a long tube acoustic cavity coupled with a steel plate (by means of 

FSI), much like in [31]. This plate (in red at Figure 5) is located at the upstream end, from the center of 

the tube. A center-line is considered along the tube-plate system. 

The tube-plate coupled system already meshed is represented in figure 5. The obtained natural 

frequencies of the system are indicated in the Table 5. 

 

 

Figure 5 – Mesh for the tube- plate system with 64 tridimensional element divisions along the length, 

and with 4 elements in the transversal direction. 

The properties for the tube and plate are presented in tables 3 and 4, respectively. 

Table 3 – Acoustic Tube Properties. 

Property Value  

Length - L 

Width and Height - b Density 

- ρ 

Sound Speed – c 

Reference Pressure - Pref  

4 m 

0.1 m 

1.21 kg/m3 

344 m/s 

1 Pa 

 

Table 4 – Plate Properties. 

Property Value  

Young’s Modulus – E 

Mass Density - ρ 

Section Width and Height - b 

Thickness – t 

Poisson’s Ratio - ν   

210 GPa 

7800 kg/m3 

0.1 m 

0.001 m 

0.3 
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Figure 6 –  Illustration of the pressure response (in color: blue is the minimum value and red the 

maximum value).  

For this vibroacoustic model, the analysis follows what is described in section 2.3, where is a fluid-

structure interface is applied between the upstream end of the acoustic tube and the end plate (Figure 6). 

First it is computed, from the finite element model, the ratio between the acoustic pressure measured in 

the center of the tube at the point P (subset K) and the dynamic displacement imposed at the center of 

the plate (subset U). After, for comparison it is computed the same transmissibility is obtained using the 

matrix method based in equation (18) i.e. by 

 

 
𝐻𝐾𝑈

𝐹𝑆𝐼

𝐻𝑈𝑈
𝐹𝑆𝐼 =

𝐻𝑧=−𝐿/2,𝑧=−𝐿
𝐹𝑆𝐼

𝐻𝑧=−𝐿,𝑧=−𝐿
𝐹𝑆𝐼 , (25) 

where both HKU and HUU are extracted from the original FR matrix [HFSI], accordingly, to the subsets of 

coordinates K and U. For comparison, the obtained results are in the Figure 7. 

Table 5 – First thirteen natural frequencies (N.F.) of the coupled tube- plate system (without 

constraints) indicating the predominant mode type: A for acoustic and S for structural 

N.F. f(Hz) Mode type N.F. f(Hz) Mode type N.F. f(Hz) Mode type 

0 A 216.08 A 390.46 A 

45.530 A 259.39 A 434.61 A 

87.363 A 302.87 A 479.02 A 

130.01 A 346.56 A - - 

172.95 A 354.32 S - - 

 

From the observation of Figure 7, it is clear the almost coincidence of the two lines. As expected, the 

flat spots and peak transitions are situated on the resonance frequencies of the system. With these results, 

it is considered that the purpose of verifying the numerical computations done to estimate the vibro-

acoustic transmissibility with a finite element model was achieved. 
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Figure 7 –  Plot of the vibro-acoustic transmissibility between K and U obtained via 

pressure/displacement ratio and via frequency response matrix method (64 element divisions along the 

length, each division with 4 transverse elements). 

5 Verification of the OTPA vibro-acoustic contributions 

In this section, the purpose is to verify the finite element model in what concerns to obtain the OTPA 

contributions S’ for the limit conditions of stiffness of the spring connections between the plate and the 

excitation vibration source. It is expected [15] to verify the following limit results. 

 

 lim
𝑘1,𝑘2→0

𝑆1
′ = 𝐶1 , lim

𝑘1,𝑘2→0
𝑆2

′ = 𝐶2  . (26) 

 lim
𝑘1,𝑘2→∞

𝑆1
′ = 𝑆1 , lim

𝑘1,𝑘2→∞
𝑆2

′ = 𝑆2  . (27) 

 

For it, the vibro-acoustic coupled model presented in Figure 8 was devised. The mesh for this coupled 

FEM has 24 longitudinal elements (for the acoustic propagation) and 8 transverse elements. The 

upstream end (left end in Figure 8) of the acoustic box is anechoic. 

The physical and geometric properties of the model in Figure 8 are the same given in Tables 1 and 4, 

with the exception that, in this case, the width b of the square plate is 2 m.  

Two active (v2 and v4) and two passive (v1 and v3) sides are considered. The outer nodes of the plate are 

simply supported and the active nodes only move longitudinally. Two harmonic loads of 1 N are applied 

in these active nodes and the harmonic displacements are measured in all the accelerometers. From here, 

the OTPA contributions S’ (to y) are estimated through vibro-acoustic transmissibility (with Ti = 

H(vi,y)/H(vi,v2,4)  and i = 1...4). These are then compared with the TPA ones, or the actual pressure value 

obtained from the receiver in y at middle of the tube.  

Just as it was introduced in section 5, the purpose of the model in Figure 8 is the verification of OTPA 

expected response with mount (springs) stiffness k variation.  

It can be stated from the values obtained that: if the stiffness of the mounts is considerably lower than 

the stiffness of corresponding plate node (for this example, ≈ 6 orders of magnitude), the OTPA (active) 

contributions are essentially the same of the baseline ones Cn (or y). For the rigid mount (≈ 6 orders of 

magnitude above plate stiffness), it is verified that the OTPA (active) contributions are in fact equal to 

the passive ones, in accordance with equation (27). 
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Figure 8 –  System with two (spring) mounts on a steel plate coupled with an acoustic medium. 

6 Conclusions 

The intended verifications of the transmissibility concept (with the simple FE models developed) were 

successfully performed. Although it was not added noise in the “measured” signals at this step, the 

results are considered a starting point for a larger study on the understanding the potential and limitations 

of the use of vibro-acoustic transmissibility to estimated responses with cross-talk effects.  
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