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ABSTRACT  
The prediction of the vibroacoustic performance of systems including porous materials requires 
a correct estimation of the mechanical parameters of porous materials. This paper investigates 
the adaptation of Oberst beam method developed for viscoelastic materials to the determination 
of complex Young’s modulus of porous materials. Analytical and numerical results based on a 
finite element model show that there are some special conditions including dimensions of test 
sample and boundary conditions where porous materials behave as viscoelastic ones. It is then 
possible to determine the complex Young’s modulus according to this method. For these 
configurations, acceptable experimental results are obtained in the case of different foamed and 
fibrous materials. 
 
 

1. INTRODUCTION  
Porous materials are often used as passive elements of noise reduction systems. Mainly used 
for sound absorbing purposes porous materials have also an ability to damp vibrations of 
mechanical structures. Being integrated into a multifunctional noiseproofing part, a porous 
material can reduce appreciably the vibration levels of, for example, steel car body panels. 
Among the parameters of porous materials, the complex Young’s modulus of skeleton 
influences strongly the damping behaviour of the porous media, and several methods exist for 
its determination [1], [2]. However, considering the porous material mainly as a damper, it is 
interesting to examine the application to porous material of a test method especially developed 
for damping material, such as Oberst’s beam method.  
Oberst’s beam method [3] is well-known and widely used [4], [5] for characterising viscoelastic 
damping materials. Porous materials being normally described by Biot poroelastic model can 
however be considered as viscoelastic ones at low frequencies [1] or in the case of finite-
dimension sample with small shape factor and open faces [6], that is in the conditions where the 
influence of the air in the pores on the total dynamic behaviour of the porous sample is 
negligible. To apply Oberst’s method to the determination of complex Young’s modulus of 
porous materials, it is necessary to adapt the measurement routine, taking into account the 
features of porous material, such as low magnitudes of density and Young’s modulus. This 
paper contains an adaptation of Oberst’s beam to the assessment of the determination of 
Young’s modulus and loss factor of porous materials. The limits of the proposed method are 
investigated through the analysis of experimental and numerical results.   
 
 



2. THEORY: COMPLEX YOUNG’S MODULUS DETERMINATION  
Oberst’s beam consists of a material to be tested bonded onto a metal slice, which is clamped 
at one end and excited at the other end (see figure 1). 
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Figure 1: Oberst beam 
Before dealing with the theoretical background of the proposed method it is important to recall 
the main assumptions made:  
Ø the test sample is considered as a rod-like one, i.e. its deformations are extensional-

compressional and are controlled by complex Young’s modulus without any influence of 
Poisson ratio (a); 

Ø the dimensions of the test sample and the frequency range of measurements suppose a 
viscoelastic dynamic behaviour of a porous material (b); 

Ø the porous material behaves in a linear way in the frequency range and deformation 
amplitudes of interest (c); 

Ø angle of deformation of porous layer does not change with thickness that means the angle 
is the same in lower layer and in upper layer of porous material as it is shown on figure 2 
(d); 

Ø in the resonance zone, the variation of Young’s modulus and loss factor vs. frequency is 
negligible (e).  
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Figure 2: Deformed and undeformed composite beam 

 
Briefly, the Young’s modulus determination by this method is based on the comparison of the 
natural frequencies of the bare beam and the composite beam (metal beam with porous layer). 
The natural frequency of the homogenous beam is given by 
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where 
n  is the mode index, 
ξn  is the mode coefficient, 

Bb  is the bending stiffness of the beam, 

mb  is the mass per unit length per unit width, m Hb b b= ρ , where ρb  is the beam 

density, and H b  is the thickness of beam, 



L b  is the length of the beam.  
It can be shown [4], after comparison of the bending moments with respect to neutral plane of 
bending of composite beam with the bending moment with respect to horizontal axis x (see 
figure 2), that the Young’s moduli of the substrate and of the material are linked to each other by 
the following equation  
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where 

21 ,EE  are the Young’s moduli of steel substrate and porous layer, respectively, 

ωc  is the natural frequency of the two-layer beam, 

ω1  is the natural frequency of the steel substrate alone, 

I1 is the moment of inertia per unit  length of the steel substrate I
H

1
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0201, II  are the moments of inertia per unit length relative to the neutral plane of 
bending of the composite beam, 

1m  is the mass per unit length per unit width of the steel substrate, 111 Hm ρ= , where 

ρ1  denotes the density of steel, and H 1  denotes its thickness, 

cm  is the mass per unit length per unit width of the composite beam, 

2211 HHmc ρρ += , where 2ρ  denotes the density of the porous layer, and 2H  
denotes its thickness. 

It is necessary to note that equation (2) supposes a linear deformation of the porous layer as it 
is supposed by assumption (d).   
Although the Young’s modulus of the porous material can be obtained directly, from the 
classical Oberst’s beam approach, the assessment of the loss factor is not as straight founded. 
Indeed, classical Oberst’s beam theory supposes the loss factor of the bare steel slice is 
negligible in comparison with the loss factor of the composite beam. In the case of the 
composite beam involving a porous layer, the loss factor of this composite beam may not be 
very large. The porous layer does not change strongly the dynamic behaviour of the beam due 
to a low specific weight and a low Young’s modulus of the skeleton. This feature requires to a 
modification the technique in order to take in account the loss factor of the metal substrate.  

The length of the paper does not allow one to present a complete derivation of the loss factor 
expression. Therefore only the most important steps and assumptions will be presented. The 
loss factor is defined as the ratio of the energy dissipated per  cycle of oscillations (D) to the 
potential energy (U) of the system (or structure). In general, the energy of the two- (or multi) 
layer structures can be described as a sum of the energies stored and dissipated in each layer. 
The damping action of a multi-layer structure is considered as a set of springs, where each 
spring represents a storing energy mechanism. The displacement of the first layer (bending 
deformation of a beam to be damped) causes a displacement of the second one. The energy 
stored in one spring is W K xi i i= ⋅ 2 , where K i is the stiffness of the spring, and x i  its strain. In 

case of periodic displacement, the energy  dissipated per cycle of oscillation, is D Wi i i= 2πη , 
so that the loss factor of the multilayer structure is given by: 
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Taking in account that the structure of interest is a two-layer beam in which the porous layer 
behaves viscoelastically, one may assume extensional-compression deformations takes place 
into this system and each layer acts as a “spring” (Ki=Kext ). Considering the extensional 



mechanism one may conclude that the value of Kext is determined by the bending stiffness of 
each layer, and by the extensional deformations of both layers. On the basis of energy 
equations, shown in [7], it is possible to write for one layer 
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where AEK ⋅=  is an extensional stiffness, A  is the cross-section area; 

dx

dξ
ε = , whereξ  is the mean axial displacement of an element of material, x  is the 

horizontal coordinate, B  is the bending stiffness of the layer relatively to the neutral 
plane of bending, θ  is the bending angle. 

Figure 2 shows the displacements in the system. In order to simplify the model,  it is assumed 
that because of the  small value of θ  the axial displacement ξ  is taken as equal to the 
displacement along the x-axis. In other words, one assumes the absence any shear 
deformation into the porous layer. Thus, the following relation holds: 

θθξ ξξ ⋅≡⋅= yy tan ,                                                     (5) 

where ξy  denotes on figure 2. Thus, taking into account that ( )
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equation (3) can be rewritten as 
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where iB  is the bending stiffness of the layer i relatively to the neutral plane of bending, 

iii hE η,,  are the Young’s modulus, thickness, and loss factor of layer i , respectively, 

and iyξ are determined from geometrical relationships shown on figure 2. 

Equation (6) establishes the relationship between the loss factor of the composite beam ( extcη ), 

the loss factor of the bare steel slice ( 1η ), which need to be measured, and the loss factor ( 2η ) 

of the porous layer, which is the objective of the measurement. The loss factor 2η  can then be 
calculated from the following:  
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Thus, equations (2) and (7) allow one to calculate the Young’s modulus and the loss factor of 
porous layer. 
 

3. EXPERIMENTAL RESULTS AND FINITE-ELEMENT MODELLING: DISCUSSION 
OF THE LIMITATION OF THE PRESENTED APPROACH  

Measurements of complex Young’s moduli by this method have been carried out by using a 
steel substrate of thickness 0.55 mm and length 130 mm. Figure 3 presents one example of the 
frequency response function (FRF) measured for one of the different tested porous materials. 
The resonance frequencies are clearly identified. The loss factor can easily be determined by 
the thickness of the resonance curve or with the help of a curve fitting procedure on the basis of 
these measured FRF. To assess the performance of this method three porous materials of 
different thickness have been tested.  



 
Figure 3: Example of measured frequency response function 

Table 1 shows Ea and ηa (apparent Young’s modulus and loss factor), which have been 
determined using equations (2) and (7) for the second natural mode of the beam. The values of 
Young’s moduli indicated on the first line have been obtained by numerous measurements 
based on the resonance test method and are considered as a reference.  

Table 1. 
Foam 1: ρ=28 kg/m3;  

Emod=118 kPa, η=0.125 
Foam 2: ρ=8.4 kg/m3;  
Emod=530 kPa, η=0.09 

Fibrous: ρ=63 kg/m3;  
Emod=116 kPa, η=0.30 

T, mm Fres, Hz Ea, 
kPa 

ηa T, mm Fres, 
Hz 

Ea, 
kPa 

ηa T, mm Fres, Hz Ea, 
kPa 

ηa 

27 168.1 70 0.14 27 199.3 188 0.09 
15 164.4 113 0.13 20 189 310 0.09 
10 164.16 115 0.12 
5 165.7 119 0.12 

10 172.4 535 0.08 
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Figure 4: Finite-element modelling: 
displacements of cross-section of 

composite beam 

The indicated results show a good 
agreement between loss factors determined 
by the present method and the resonance 
one, but also exhibits big differences 
between Young’s modulus values obtained 
in the case of maximal and minimum 
thickness of porous materials. After 
examination of different probable causes of 
this effect the response was found by 
detailed consideration of assumption (d), 
which supposes a linear bending of the side 
of the porous material. The finite element 
simulations allow one to analyse the 
displacement field inside the porous 
material. Figure 4 displays the deformation 
shape of beam with foam 1 (thickness of 
foam makes 27 mm) at the second natural 
mode of bending. The steel substrate has 
been meshed by shell elements, the porous 
layer have been modelled by solid elements 
and has been divided onto nine elements 
along the thickness. Totally, the sample of 
porous material (130*20*27 mm) has been 
meshed by 2730 solid elements. 

 



The picture illustrates the change of the bending angle along the thickness. It shows that upper 
layers of porous material bend more  strongly than lower ones. In the case of low thicknesses of 
porous layer (5…15 mm), finite-element (FE) simulations show that the bending angle remains 
constant in the thickness of the porous material. It is confirmed by finite-element simulations 
shown in table 2. 

Table 2. 

 Foam 1: ρ=28 kg/m3; Emod=118 kPa Foam 2: ρ=8.4 kg/m3; Emod=530 kPa 
Thickness of 
porous layer, 
mm 

Resonance 
frequency, FE 

simulation 

Resonance 
frequency, analytical 

prediction by 
equation (2)  

Resonance 
frequency, FE 

simulation 

Resonance 
frequency, 

analytical prediction 
by equation (2)  

0 168.1 168.2 168.1 168.2 
5 165.7 165.9 167.9 168.1 
10 163.6 164.3 170.8 172.2 
15 162.1 164.5 176.1 183.8 
20 161.1 167.0 185.3 205.0 
27 160.6 175.5 201.7 251.9 

 
One can conclude that in the case of both materials a good agreement between analytically and 
numerically predicted frequencies is observed at thicknesses of porous materials equal to 5 and 
10 mm. Very similar results have been obtained experimentally (see table 1). Thus, one can say 
that for porous materials with Young’s modulus ranging from 100 to 500 kPa, the thickness of 
the porous layer should be limited to 10 mm if Oberst’s beam is to be used. On the other hand, 
it is necessary to point out that this limitation is related to the assumptions made in the 
derivation of the analytical formula for Young’s modulus calculation. This is not a limitation 
inherent to Oberst’s beam method, which could use numerical FE calculation. 
 

4. CONCLUSIONS  
Oberst’s beam method has been adapted to determine complex Young’s moduli of porous 
materials. The modified equations of loss factor determination and one principal limit of the 
method have been established. The experimental results obtained by the proposed method for 
three different materials showed a good agreement with the ones received by an other test 
method.  
 

5. ACKNOWLEDGEMENTS  
This research was supported by Region Rhône-Alpes in the framework of research project 
IMPACT. 
 

REFERENCES  
[1] E. Mariez, S. Sahraou, J.F. Allard “Elastic constants of polyurethane foam’s skeleton for 

Biot model,” Proceedings of INTER-NOISE 96, 951-954. 

[2] C. Langlois, R. Panneton, N. Attala, “A method for the mechanical characterisation of 
poroelastic materials,” Canadian Acoustics/Acoustique canadienne, v. 28 No. 3, 82-83 
(2000). 

[3] H. Oberst, K. Frankenfeld, “Uder die Dampfungder Biegeschwingungen dunner Bleche 
durch festhaftende Belage”, Acustica, 2, pp. 181-194, 1952. 

[4] L. Mina, Liu Guo Liang, L. Garibaldi. “The Estimation of Damping Material Loss Factor 
in the Oberst Beam Test”. 2nd International Conference VEHICLE COMFORT, Vol. 1, 
pp. 197-205, Bologna, Italy, 1992. 

[5] P.Saha, J. Cahine “The Testing of Vibration Damping Materials”. Sound and Vibration. 
May, 1995, pp. 38-45 

[6] Rapport de recherche, année 2, contrat Région Rhône-Alpes IMPACT (Innovation en 
Mécanique Passive et Active pour la Prévision et le Contrôle vibroacoustique), 2002.    

[7] E. E. Ungar “Loss Factor of Viscoelastically Damped Beam Structures”, J. Acoust. Soc. 
Am., v.34, pp. 1082-1089, 1962 


