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ABSTRACT 
 
The purpose of this study is to give critical insight and needed specificity to the accordion reed 
making and tuning process. We present the acoustical background of the reed behaviour and its 
sensitivity to selected shape changes. 
 
 
INTRODUCTION 
 
The accordion reeds have different shapes, some of them are loaded with a little mass at their 
free end, and they are worn out to adjust the tuning, etc. All these facts complicate the 
achievement of a theoretical model that accurately describes the vibration behaviour of the 
mentioned reeds. In our work, we try to develop a physical knowledge useful in the elaboration 
and tuning adjustments of the reeds of the instrument. Using a perturbation approach, we 
research the possibilities to control the frequencies, vibration amplitude and quality factor of the 
resonance modes, that is, the parameters that influence in an essential way in the production of 
accordion tones. We consider the reed as a thin clamped-free bar. 
 
In this paper, by slightly perturbing the mass and the effective stiffness of a clamped-free 
stainless steel bar we investigate the frequency change of the first resonance mode, and the 
shape of the complete vibration mode. 
 
 
BACKGROUND THEORY 
 
Normal Modes of Transverse Vibration of a Clamped-Free Bar 

 
Let us consider a perfectly rectangular and homogeneous metallic thin bar of length L, width b, 
thickness h, and mass M. In spite of the transverse vibration, there exists a neutral axis whose 
length remains invariable. We will take a coordinate x that measures the position along the bar 
and a coordinate y that measures its transverse deformation from the neutral axis. The equation 
that describes the propagation of transverse vibrations through this bar is 
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Here, 
12

h2

=κ represents the radius of gyration of the transverse section of the bar and 

ρ
=

Y
c , where Y is the Young’s modulus and ρ  is the density of the bar. 

 
The solution of this equation is 
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where A, B, C and D are real constants, which will be fixed by the boundary conditions, and 

κω= cv . 
 
We can consider an accordion reed as a thin bar clamped at one end ( 0x = ) and with the other 

end free ( Lx = ). Thus, we have 0y = , 0
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Clamped end conditions simplify the general solution to 
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while the free end conditions imply the following two additional conditions 
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which can be reduced to 
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modes of vibration are ...)7;5;988.2;194.1(
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So, the characteristic function corresponding to the frequency nf  will be given by 
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by taking the convenient normalization constants nA . 



The shapes of the first four transverse modes of vibration are shown in Figure 1.  

 
Figure 1. Normal modes of transverse vibration of a clamped-free bar. 

 
If an oscillator of mass m and stiffness constant k has a resonance frequency f given by 

m

k

2

1
f

π
= , then the characteristic frequency of the n-th normal mode of a vibrating system can 

take an analogous expression 
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efS  and the effective mass efM  of the n-th normal mode. In the case of transverse oscillations 

of a clamped-free bar that is excited at a point 0x  it can be shown that the effective stiffness 

and mass are given by: 
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Perturbation Approach to Evaluate the Normal Modes 

 
If we place a small mass centred at a point 1x  of the bar the frequency of the normal modes 

changes. We can interpret this variation as caused by the variations in the effective mass and 
rigidity of the composed (bar plus mass) system. 
 

We denominate ef
n'M  the effective mass of the system when we add a small mass m. We will 

suppose that this loading mass is so little that the normal modes and the effective stiffness 
remain invariable. We call nf  the frequency of the n-th vibration mode of the system without the 

loading mass, and n'f  the frequency of the n-th vibration mode of the system with the loading 

mass; the relation between both frequencies will be: 

 
FIRST MODE

n=1

0

0,5
1

1,5

2
2,5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Relative Length x/L

A
m

p
li

tu
d

e
SECOND MODE

n=2

-3

-2

-1

0

1

2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Relative Length x/L

A
m

p
li

tu
d

e

THIRD MODE 
n=3

-2

-1

0

1

2

3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Relative Length x/L

A
m

p
li

tu
d

e

FOURTH MODE
n=4

-3

-2

-1

0

1

2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Relative Length x/L

A
m

p
li

tu
d

e



ef
n

ef
n

ef
n

ef
n

ef
n

ef
n

ef
n

ef
n

ef
n

ef
n

ef
n

n

n

M

M
1

MM

S

M

S

'M

S

M

S

'f

f ∆
+=

∆+

==  (9) 

 
But, the expression of the modified effective mass can also be written as 
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Using Eq. (7), (8), (9) and (10) we deduce the following relationship between frequencies 
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From this relation we can find the following expression for the function ny  evaluated at 1x  (the 

point where the concentrated mass has been placed at) 
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Therefore, if we know the values of the masses of the bar and the loading mass, M and m, and 
we measure the frequencies f and 'f , we will be able to calculate the value of the n-th mode of 
vibration at the point of placement of the mass. If we go moving the loading mass, we will be 
able to obtain the shape of the complete vibration mode. Then, we will be able to evaluate the 
validity of this perturbation approach by comparison of the obtained expression for )x(y 1n  with 

that of the theoretically obtained one in accordance to the equation (6) (we will denote this last 

value )x(y 1n
teor ).  

 
 
EXPERIMENTS 

 
Experimental conditions 

 
For the experiments, we used a stainless steel bar, of the following characteristics: 
width b = 29.75x10-3 m, thickness h = 1.5x10-3 m, and density ρ  = 7900.8 kg/m3 

 
We carried out two series of experiments with clamped-free end boundary conditions, 
simulating this way the boundary conditions of the accordion reeds (See Figure 2). 

 

 
 

Figure 2: The two different experimental conditions used in this work. 
 



In the first series, the vibrating length of the bar was L = 189x10-3 m. In the second series, the 
bar was loaded with a concentrated mass of 8.48x10-3 kg (this added mass had a diameter of 
14 mm, and its edge coincided with the free end of the bar). In order to normalise the frequency 
of the fundamental mode with that obtained in the first series, the vibrating length of the bar was 
set to 178x10-3 m. 
 
The measurements of frequency, vibration levels and quality factors were carried out with a 
“2034 Brüel &Kjær Dual Channel Signal Analyser”, and a miniature 4374 accelerometer of the 
same company. The experimental device is shown in Figure 3. 
 
Experimental device 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reel that induces magnetic field  A: Entrance of the reel 
 

Magnet plus accelerometer   B: Entrance of the accelerometer 
 

Clamped-free bar    C: Exit of the reel 
 

Figure 3. Scheme of the experimental setting 
 
A generator added to the analyser produces an alternating current in the reel (with exit C) that 
creates a magnetic field. This magnetic field acts on the magnet, which in turn produces an 
excitement force on the clamped-free bar. Exciting with the appropriate frequency band of 
“white noise” signal, the bar vibrates, reaching its vibration maximum at the resonance 
frequency. We obtain the input admittance of the bar as a function of the frequency by collecting 
the vibrations with the accelerometer (entrance B), processing them with the analyser, and then 
dividing by the intensity of the reel (entrance A). This device allows measuring the frequency of 
resonance, vibration levels, quality factor of the resonance modes and phase differences 
between the exciting force and the vibration speed of the bar. This method of measurement of 
input admittance is similar to that used by Erik Jansson and one of the authors, in the Royal 
Institute of Technology of Stockholm. 
 
Experimental process 
 
With a bandwidth of 50 Hz and 800 lines in the analyser, our precision was of + 0,0625 Hz; the 
high reproducibility of our measurements indicates that this value seems to measure the 
experimental error. 
 
In order to compare the expected results from the vibration theoretical model of a clamped-free 
bar with the experimental variations of frequency, some measurements were carried out in both 
series.  A loading mass m = 3x10-3 kg was placed at the free end of the bar and, starting from 
there, it was moved toward the fixed end by 20 mm steps. 
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RESULTS 
 

Comparing the values )x(y 1n  and )x(y 1n
teor  we obtain that the agreement is reasonable when 

the loading mass is close to the free end ( Lx = ) of the bar; nevertheless, when the loading 
mass position comes closer to the clamped end ( 0x = ), )x(y 1n  is bigger than the expected 

theoretical value. 
 
As it could be supposed, when placing the loading mass, the frequencies of resonance are 
smaller than those obtained when no mass is placed, since the effective mass of the system 
increases. However, we observe that when the loading mass is placed very close to the 
clamped end, the measured frequency 'f  is bigger than the frequency f of the bar without the 
loading mass. It is because the effective stiffness of the system increases and the oscillations 
become quicker. We could take advantage of this effect to increase the frequency of a reed by 
means of the application, for example, of a small tin layer close to the clamped end, instead of 
the classic procedure of removing weight from the free end by filing the reed of. Evidently, 
before opting for this procedure it would be necessary to compare the timbres and responses of 
both types of reed. 
 
 
CONCLUSIONS-APPLICATIONS 
 
• This first approach shows that by means of perturbations of small masses, it is possible to 

carry out a description of the vibration pattern of the bars. The results can be applied to the 
accordion reeds. 

• The perturbation theory can help the manufacturer and tuner of reeds in their corresponding 
activities. 

• This work suggests that the manufacturers and tuners can use more degrees of freedom 
than the usual ones, so that a number of applications for the improvement of the reeds 
seem to be opened. For example, to increase the frequency, it is possible to use an 
increase of the rigidity near the clamped end, and not only the usual procedure of removing 
mass from the free end. 

• In the second experiment, the big concentrated mass, fixed at the free end of the bar, 
changes noticeably the vibration pattern, making the amplitude lower than that of the 
equivalent bar of the first experiment. Nevertheless, the same perturbation approach of the 
first experiment can be used, placing a little concentrated mass every 20 mm starting from 
the free end. This lower amplitude can be one of the reasons for the preference of long 
reeds without loading mass to shorter reeds with concentrated mass at their free ends. 

• A theoretical and experimental physic control of the perturbations of mass and rigidity 
seems to give a suitable knowledge for the necessary technical-handmade activity in the 
precise adjustments that the accordion reeds need. 

• As a future research, we set out a more detailed vibration analysis for the first partial and 
the upper ones, as well as the study of the influence of the design and of the perturbations 
in the timbre of the instrument. 

• Our calculations, based on the experimental measurements, point out that the quality factor 
(Q) increases at least a 10% in the second series, that is, in that of the shortened bar with 
the added big mass at its free end area. Nevertheless, more experimental evidence is 
necessary to reach decisive conclusions as well as for the development of the 
corresponding theoretical model. 
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