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ABSTRACT   
This paper presents a monitoring system which classifies noise by means of  
neural networks. The system is based on two microphones, and four  
networks working in parallel; each classifying one type of aircraft. The 
classification units are developed from measurements at different airports 
and roads. The input parameters are all derived from 1/3 octave band 
levels, calculated every 1/8 second. The networks have been tested against 
real events like take-off, landing, road traffic and farm-machinery. 
 
 
 
INTRODUCTION 
 
In spite of the advances that have been made in measuring, modelling and  
optimising aircraft operations, the noise caused by air traffic is still a severe 
problem to many people.  In order to reduce the annoyance, the Norwegian 
authorities have imposed a noise limit for the dose acceptable inside a 
dwelling, a dose where only aircraft noise is to be contributing. This decision 
involves two consequences: 
 
1: A monitoring system which measure, classify  and calculate the noise     
    must be available, and  
 
2: Mitigating actions have to be taken if the dose reach the limit.  
 
The first task is not trivial because of the need for classification. To our 
knowledge, an instrument which perform all the three tasks directly is not 
commercially available. The measurements will be performed outside the 
house of the complainer, for a week or two, and the quantity which is to be 
calculated is the Norwegian index EFN, which is quite similar to the LDEN, a 
time-of-day weighted equivalent level. 
 



In order to classify the dose correctly, the system must be able to 
discriminate the different sources, either by directional methods (two or 
more microphones), acoustic means, or a combination of the two.  
 
 
 
THE CLASSIFICATION PROBLEM. 
 
In cooperation with Norsonic and Luftfartsverket (Norwegian Air Traffic and 
Airport Management),  SINTEF Telecom and Informatics evaluated different 
ways to separate the noise sources. Because of the high cost of 
microphones that meet the relevant ISO standard for outdoor 
measurements, directional methods alone was excluded (an array of 
microphones). By utilizing the nature of the sound itself by extracting 
spectral information, an Artificial Neural Network (ANN) was thougth to be 
the best candidate.  
Aircrafts are divided into four categories: 1)jetplanes, 2)helicopters, 3)piston 
engines and 4)turboprops. In order to separate aircraft noise from all other 
noise, and  distinguish the four categories from each other, there must be 
some difference in the sound itself , in the spectra and signatures of the 
signals; both between aircrafts and other sources, but also between the 
different types of aircrafts. The main challenge when working with a Neural 
Network is to find input parameters to the network which exploit these 
differences. In our case the parameters was defined by studying typical 
spectra and signatures (from different airplanes). Special bands of interest 
was averaged in time and frequency, building up a set of distinct input 
parameters. Also single spectral components was evaluated. Figure 1A and 
1B show typical spectra from the four different types; we see very clear 
spectral components for both helicopter and piston engines, while the 
spectrum from the jetplane is broad and smooth, ranging from 20 Hz to 6-7 
kHz. 
The performance of the network is very sensitive to the composition of the 
dataset used for training, as the data must reflect the total range in both 
time and frequency domain in order to generalize well. This is a big 
challenge  in aircraft noise classification because of the large dynamic 
range in both intensity, duration and spectrum of the same source. One 
example is a jetplane passing directly over the head of the observer. This 
event will last for some seconds with a level of up to 105 dBA, while a plane 
passing at some distance away may last for a minute or two, never higher 
than 55 dBA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1A   Spectra as a function of time for a turbo prop (left), and a piston 
engine (right). Resolution along the y-axis is 1/3 octave band, with the 
center frequency as the label. The level in dB is given by the colour. 
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Figure 1B   Spectra as a function of time for a jetplane (left) and a helicopter 

(right). Resolution along the y-axis is 1/3 octave band, with the center 
frequency as the label. The level in dB is given by the colour. 

 
 
Another difficulty is the combination of sources, mainly cars and aircrafts, 
which might often occur if the system is to be placed close to a road. The 
problem is not only how to make a correct classification, but also how to do 
the calculation. What is the contribution to the dose if the sources are 
relatively equivalent, can we ever neglect the whole event? 
If the network cannot deal with these problems, one may remove the weak 
categories. This will minimise the error in the dose-calculations.   
 
 
 
SYSTEM DESCRIPTION 
 
The Neural Network is implemented as a part of the software of an 
otherwise normal noise monitoring system, consisting of two units. One unit 
is performing the measurements, and is designed to be placed anywhere; 
with internal power-supply, and with a high mast for the sensors. This 
autonomous part consists of a Norsonic 121, a PC, a mobile phone line 
(GSM) and a classification module based on Neural Networks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2   Complete monitoring system. 
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A second microphone is also available with elevation information, if needed. 
This might be helpful in complicated  cases. The other half of the system, 
the central unit, is the stationary part with the user interface. The 
calculations of  the dose is performed  in this part . There is a possibility for 
the user to listen to special tracks of interest, and compare them to the 
classification result. A sketch of the system is shown in Figure 2. 
  
In addition to the calculation of EFN, the system is also designed for being 
able to count the number of events caused by different propulsion systems. 
The propulsion systems are divided into four categories; turbofan, 
turboprop, piston engines and helicopters.  This however, is subsidiary. 
 
 
 
BUILDING AND TRAINING THE NETWORK. 
 
Measurements 
 
A total of approximately 600 different sequences have been measured at 
Norwegian  airports, in order to get a wide representation of different 
aircrafts, different distances to the sources, different ground conditions and 
different weather conditions, all of which will influence the character of the 
sound. Trains, busses, cars, farming machinery, building noise and general 
noise in cities have also been recorded to feed the network with examples 
describing the group we do not want to contribute in the calculations. Some 
of the sequences include many events.    
 
Architecture and Training Philosophy. 
 
The Neural Network is developed using the software "Neuroshell2". We 
have used a Backpropagation Architecture, because these networks usually 
generalize well. This is a supervised type of network, e.g. trained with both 
inputs and outputs. As a learning paradigm we have used a standard three 
layer connection, where every layer is connected to the immidiately  
previous layer. The architecture is shown in Figure 3.  
 
The output from neuron j in layer i can be expressed as ui
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where b i

j  is a constant spesific for this neuron, wi
j,n  is a weightfactor to 

which the output from neuron  n in  layer i-1 is multiplied. The function f  
is usually an unlinear function, which maps the sum to the range [-1 ,1] or  
[0,1]. 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 3.  Network architecture. 
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As a part of the training methodology approximately 20 % of the training set 
is used for testing the network during training. The vectors are chosen 
randomly, and is only used for this test. The network is applied to the test 
set every 200 input-pattern, and the mean square error is computed. 
Whenever the mean square error is less than the previous, the network is 
saved. The network stops training when there is more than 200 000 
patterns since last updating.  
 
Different Nets 
 
To reflect quick changes in the time signature, a new input pattern is fed to 
the network every 1/8 second. As stated, the input vector consists of 
averaged values in time and frequency, based on 1/3 octave band values. 
Some signal prossessing has also been done to emphasize the strong 
spectral components for some sources. 18 different nets have been tested 
for each of the four sources,  varying time-averaging, input parameters 
(maximum 26), detection level, scaling of input parameters, number of 
nodes in hidden layer,and how to define the fasit.    
 
Postprossessing 
 
The binary output from the net will tend to oscillate for a short time now and 
then, and this is filtered away in a postprossessing unit. Because there are 
four net running in parallel, the output from the four should also be 
correlated,  never allowing double classification. The last stage is the 
calculation of the dose, which is based on a local maximum (A-
weighted,slow) within the relevant time interval (when the output from the 
NN is high). This is the final requirement for accepting the detected event as 
a real aircraft event.   
 
 
 
RESULTS AND DISCUSSION 
 
The networks have been tested twice, the first time with datasets from the 
same positions (same position but different datasets) as used for training, 
the last test with datasets from total new positions.  
 
With datasets from the same position included in the dataset for training of 
the system, the performance was very good; -  for piston engines, jetplanes 
and turbo-props, all events were detected and classified correctly, for 
helicopters 87.5 %. At the same time less than 0.5 % false alarms existed.  
This performance was achieved with a relatively high detection level, and 26 
input parameters.  The test-sets consisted of all four aircraft types, cars, 
busses, tractors, trains, and other more constant-noise sequences.  There 
was no sequence with two sources of equal strength, and there was no 
sequence with taxing / reversing. 
 
When using datasets recorded under  different conditions, the performance 
was reduced. The testset now included both taxing and reversing, but 
lacked helicopters due no traffic at the spesific airport used (Værnes). 
Sequences with aircraft-events in a high background noise were present, 
also recordings with snow on the ground (all datasets used for training were 
recorded in summer / autumn). The best result from this test is presented in 
Table 1. 
 
 
 
 



 
 
NETWORK 

Correct 
detection 
[%] 

False alarms 
 
[%] 

 
TURBO-PROP 

 
76 

 
0.02 

 
PISTON ENGINE 

 
66 

 
0.02 

 
JET-PLANES 

 
90 

 
30 

 
Table 1.  Results from Test 2. 

 
 
The results show that the system can still be improved, especially the jet-
classificator. By decreasing the detection level, the number of correct 
detections will increase, but so will the number of false alarms. By 
increasing the detection level the opposite will happen.  The many false 
alarms in jet-classification were due to passing of cars in a relative high 
background noise. To the ear the noise from the tyres sounded like a 
jetplane at some distance. Since the last stage in the post-prossessing unit 
was not  implemented, and neither the extra microphone, it is too early to 
state what is the best, higher classification prosent with a higher number of 
false alarms, or reduced classification prosent with less false alarms. 
 
The turbo-prop was the best net alltogtehter, with very few false alarms, and 
a relative high detection score. By decreasing the time the output had to 
stay high before accepting it as an event,  many of the missing events for 
both turbo and piston would have been detected, but this would also lead to 
an increase in false alarms. Because we have not studied the consquence 
this will give to the dose contribution,  we cannot conclude what is the best. 
 
The results did not include all the post-prossessing units. The output from 
the networks were filtered, but not correlated to each others completely, and 
not related to a local maximum (A-weighted, slow). Especially a number of 
the false alarms for jetplanes will be reduced with this part present.  
The results show that it is an advantage if the system is trained in the 
posistion where it is meant to measure. This will increase the performence, 
and also the database for training sets.  
 
 
 
CONCLUSION 
 
A final evaluation  of the complete system is not possible before all the post 
prossessing units are implemented. We believe though that such a system 
has great potensials in monitoring and calculation of  aircraft noise. 
 
 
 

 
 
 
 
 
 
 
 
 
 


