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ABSTRACT 
Transient sound radiation from baffled rectangular plates with free viscoelastic layers excited by 
an impulsive point force is studied both analytically and experimentally. The contact force 
developed during impact between a ball and a plate is represented as a point force with a 
squared half-period sine-wave time history. The vibration responses of the plates are obtained 
using normal mode analysis, modal parameters being estimated by means of the FEA and the 
MSE method. The radiated sound wave forms are obtained by numerical integration of the 
Rayleigh integral. An experimental study is carried out to measure the vibration responses and 
sound radiation of plates impacted by a steel ball. 
 
 
INTRODUCTION 
Transient sound radiation from elastic structures excited by impact forces is a fundamental 
problem in industrial noise control and has been extensively investigated with the aim of 
clarifying the mechanism of sound radiation [1-5]. The use of viscoelastic materials which have 
been applied to control vibration and noise in automobile, aircraft, railway vehicle structures and 
electronic devices can successfully decrease impulsive sound radiation from mechanical 
systems, as damping is effective in controlling the resonant response of elastic structures. Only 
a few studies, however, have discussed impact sound radiation from elastic structures with 
viscoelastic layers. Jeon[6] studied the transient sound radiation from a composite, clamped 
circular plate with viscoelastic layers. The contribution of damping materials to impact sound 
radiation from a simply supported rectangular plate was studied by Traccaz[7]. 
 
In this paper, the transient sound radiation from a clamped rectangular plate with free 
viscoelastic layer is studied. The contact force is, addressed to the article of Akay[8], 
represented as a point force with a squared half sine wave time history. The sound pressure 
waveforms and Fourie spectra are obtained by numerical integration of the Rayleigh integral. 
These results are compared with corresponding experimental results. 
 
 
ANALYTICAL METHOD 
Calculation of the Plate Response 
The vibration response of a thin plate as illustrated in Fig. 1 to an impact force applied at a point 

x 0
, y 0

( ) can be found by solving the equation of motion of the plate as 
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where δ( )  is the Dirac delta function, w x , y , t( )  is the 
displacement of the plate and F t( )  is the applied force. D  
and m

p
 are the flexible rigidity and mass per unit area of the 

plate. The effect of damping of the plate is represented by 
introducing the damping coefficient C . The fluid surrounding 
the plate is homogeneous, with a speed of sound c  and 
density ρ much less than the density of the plate and the 
back reaction of the radiated acoustic pressure is neglected. 
The displacement response of a plate to an arbitrary force 
can be written on the assumption of proportional viscous 
damping as 

FIG. 1. Coordinate systems. 
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and mode shapes respectively, with the subscript r denoting the mode number. 
 
A method shown by Akay[8] based on the Hertz law of contact is applied to the analytical 
procedure for calculating the impact force, which is generated by a collision of a sphere with a 
flat body. The expression for the contact force developed during elastic impact of a sphere of 
radius R  with a rigid plane surface is given as a function of the relative approach α of the 
sphere and the impacted plane surface: 
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where E
s
, E  and ν

s
, ν are Young’s moduli and Poisson’s ratios of the sphere and impacted 

body respectively. In the case of impact of a sphere with a large thin plate, the impulsive 
force-time history is represented as a squared half-period sine-wave time history. 
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where the duration of contact T
H  is given by 
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 is the 
maximum value of the relative approach α, 
and V

0
is the impact velocity. Following the 

analysis given by Zener[9], the maximum 
impact force F

0
 is obtained from Fig. 2 by 

using the inelasticity parameter 
λ = 3.218 m

s
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H
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, where ms  is the mass of 

the sphere and Z
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 is the driving 

point impedance of the plate. 
 
 
 
Substituting Eq. (4) into Eq. (2), the 
displacement response of a plate to an 
impact force can be found as 

FIG. 2. Impact force amplitude [8]. 
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where 
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( ii ) for t > TH  
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Acoustic Pressure Radiated from a Plate 

The acoustic pressure at a point x
p
, y

p
, z

p
( ) radiated from a plate vibrating in an infinite baffle is 

calculated by Rayleigh integral 
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where ρ is the air density. The plate acceleration ( )tyxw ,,&&  is obtained by differentiating Eq. 
(5) as 
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NUMERICAL RESULTS 
The numerical results are presented in the case of impact between a 24.7 mm diameter steel 
ball and an aluminum plate with dimensions of 480 ×360 mm and thickness of 2 mm which is 
clamped in a frame with thickness of 10 mm. A free layer damping material with thickness of 1 
mm is applied to the reverse side of plate. The sphere initial velocity is 1.0 m/s and the impact 
occurs at the center of the plate. Numerical calculations have been carried out taking into 
account the 16 modes with natural frequencies up to 600 Hz. The undamped mode shapes and 
modal parameters were computed for the composite plate with the visco-elastic material treated 
as it were purely elastic, then the modal loss factors were obtained by the modal strain energy 
method [10]. The integration in the Eq. (6) is performed by dividing the plate into a lattice of 20 
mm. Calculated displace and sound pressure waveforms at the center of the plate are shown in 
Fig. 3 for the plate without and with damping layer. The first peak observed at 1.5 millisecond in 
the waveform of sound pressure is due to rapid surface deformation of the plate and is followed 
by the decaying sound pressure due to pseudo-steady state radiation [1]. Damping reduces the 
sound radiation only from the pseudo-state vibration of the plate. Fourie spectra of the plate 
vibration velocity and sound pressure are given in Fig. 4. The displacement spectrum has been 
multiplied by jω  to obtain the velocity spectrum. The peaks at natural frequencies apparently 
reduce by adding damping layer. The peak plate velocities and sound pressures in the 
frequency domain are plotted in Fig. 5 for various impact velocities. It can be seen that the 
sound pressures are proportional to the impact velocity. 
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FIG. 3. Calculated plate displacement and sound pressure. 
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FIG. 4. Fourie spectra of calculated plate velocity and sound pressure. 
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FIG. 5. Peak plate velocity and sound pressure vs. impact velocity. 



EXPERIMENTS  
Measurements corresponding to the theoretical 
prediction were carried out to obtain plate vibration 
responses and radiated sound pressure waveforms 
and their spectra for plates without and with damping 
layer. Rectangular aluminum plates were clamped at 
the edges using sandwich frames bolted together and 
were placed in a baffle. The schematic diagram of the 
experimental setup is shown in Fig. 6. The plates were 
impacted at the midpoints by a steel ball of 2.47 cm 
diameter. The ball was dropped from various heights to 
obtain different impact velocity. The plate displacement 
and sound pressure waveforms were measured using 
a laser displacement meter and sound level meter.  FIG. 6. Experimental setup. 
 
Examples of measured plate displacement and sound pressure waveforms are given in Fig. 7. 
The spectra for the experimental results are shown in Fig. 8 [11]. The measured waveforms and 
spectra are similar to those analytically obtained. Peak plate velocities and sound pressures at 
frequencies corresponding to modes (1,1), (3,1), (3,2) are plotted against the impact velocity in 
Fig. 9. The sound pressures are approximately proportional to the impact velocity. 
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FIG. 7. Measured plate displacement and sound pressure. 
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FIG. 8. Fourie spectra of measured plate velocity and sound pressure. 
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CONCLUSIONS 
Transient sound radiation from baffled rectangular plates with and without free viscoelastic 
layers excited by an impulsive point force has been obtained analytically and validated 
experimentally. Consistent results of the plate displacement and radiated sound pressure 
between the predicted and measured are obtained. The radiated sound pressure is proportional 
to the impact velocity. The use of viscoelastic material has the effect of reducing the spectral 
peaks of sound pressure at the natural frequencies of plate vibration. 
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