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ABSTRACT. Cavitation noise represents a useful source of information on physical processes 
accompanying bubble oscillations in liquids. However, to be able to extract this information from 
measured data, both a suitable mathematical model of cavitation noise and an appropriate 
method for signal analysis are necessary. In presentation these problems are discussed in 
detail in view of recent results obtained by the author. Cavitation noise is modeled under 
assumption that certain parameters controlling the bubble oscillations are random and hence 
radiated pressure waves, perceived as cavitation noise, may be described as a superposition of 
nonrandom functions governed by a finite set of random parameters. The mean values of these 
parameters are obtained from a numerical computation using the Gilmore's model of an 
oscillating bubble. Cavitation noise model is then used to generate a time series which can be 
analyzed. The computed autospectral densities are compared with corresponding 
experimentally determined autospectral densities and inferences on cavitation noise are drawn. 
 
 
 
INTRODUCTION 
 

Oscillating cavitation bubbles represent a source of intensive pressure waves. As these 
waves have a random character, they are called cavitation noise. Cavitation noise is carrying 
information about the oscillating bubbles and it should be possible, using a proper method of 
analysis, to extract this information.  A number of statistical characteristics can be used for this 
purpose. However, in experiments, autospectral densities of cavitation noise have been 
measured first of all [1 - 4]. 
 

To be able to extract the information contained in autospectral densities, a suitable physical 
and mathematical model of cavitation noise is needed. In the literature three approaches to 
cavitation noise modeling can be found. Cramer and Lauterborn [5] concentrated on explanation 
of the origin of discrete spectral lines and among them especially on subharmonics and their 
harmonics. Another approach to this problem has been presented in reference [6], where 
cavitation noise is explained using a chaos theory. Yet another approach has been considered 
by Bohn [2], who suggested to use a random pulse processes to model cavitation noise. 
 

In this paper two types of random pulse processes will also be used to model cavitation 
noise. These models make it possible to simulate cavitation noise on a computer. Theoretical 
autospectral densities of simulated cavitation noise are then computed and compared with 
experimental ones. Based on this comparison several conclusions are drawn. 



CAVITATION NOISE MODELS 
 

When a liquid is irradiated by a sufficiently intensive periodic pressure wave, cavitation 
bubbles are generated and forced to oscillate. The bubbles grow during strain half-periods of 
the driving acoustic field and are compressed during stress half-periods. While oscillating, the 
bubbles emit pressure waves into the surrounding liquid. These pressure waves consist of 
short, steep, high pressure pulses and of long, moderate, rarefaction portions. The pressure 
pulses are radiated when the bubbles are compressed to minimum volumes. As this happens 
during the stress half-periods, the pressure pulses are emitted at almost periodic intervals equal 
to the period of the driving acoustic field. In the following the rarefaction portion of the pressure 
wave will be not considered and the pressure pulse form will be approximated by a double-sided 
exponential function [7] 
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Values of the peak pressure P and time constant θ can be estimated using the scaling 
functions published in reference [8]. These scaling functions have been computed using the 
Gilmore's model of an oscillating bubble. Assuming the amplitude of bubble oscillations A=3.5 
and the adiabatic exponent for the bubble content (vapour) γ=1.25 [7], the corresponding non-
dimensional peak acoustic pressure in the pulse is Pz=200, and non-dimensional pulse effective 
width ϑz=10-3. Assuming further that the maximum bubble radius is RM=1 mm and that pressure 
pulse is measured at a distance r=0.1 m from the bubble centre, the dimensional peak acoustic 
pressure is P=3x105 Pa and pulse effective width ϑ=0.1 µs. These values correspond to water 
(ρ∞=103 kg.m-3) under atmospheric pressure p∞=105 Pa. It is an easy exercise to verify that for 
the pressure pulse form given by equation (1) the effective pulse width ϑ is equal to the time 
constant θ. 
 

Let us assume that the pressure pulses radiated in different periods are mutually 
independent (this corresponds to a "bubble without memory"). For reasons which will be clear 
later two models of cavitation noise will be considered. In the first case a single cavitation 
bubble is assumed. Then the mathematical model of cavitation noise p(t) can be written in the 
form [9] 
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Here Pk is a random peak acoustic pressure of the pulse in the k th period, ϕk is a random 
distance of the k th pulse from a reference point in the k th period, and θk is a random time 
constant of the pulse in the k th period [9]. 
 

In the second case a cavitation field consisting of N bubbles is assumed. Now the pressure 
pulses are radiated almost synchronously and thus groups of random pressure pulses are 
arriving almost periodically at the place of a hydrophone. The model of the cavitation noise p(t) 
can be written now in the form [9] 
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Here Nk is a random number of pressure pulses in the k th group (period), Pkn is a random 
peak acoustic pressure of the nth pulse in the k th group, ϕkn is a random distance of the nth 
pulse in the k th group from a reference point in the k th period, and θkn is a random time constant 
of the nth pulse in the k th group [9]. 



CAVITATION NOISE ANALYZIS 
 

A closed form formulas for autospectral densities of cavitation noise models defined by 
equations (2) and (3) have been derived and analyzed in [9]. These closed form formulas are 
very useful in gaining an insight into the structure of the theoretical autospectral densities, and 
will be occasionally mentioned in this paper. A different way how to determine the autospectral 
densities is by simulating cavitation noise (using equations (2) and (3)) on a computer and by 
computing the corresponding autospectral densities using a standard procedure described, e.g., 
in [10]. This second approach has been described in reference [11] and will be also used here. 
 

By inspecting the autospectral densities of cavitation noise measured in experiments [1 - 4], 
it may be seen that they consists of two parts. First, there is an almost flat continuous spectrum, 
spanning very broad range of frequencies from a few kHz to several MHz [1, 2]. Second, the 
measured spectra contain discrete lines occurring at a frequency of the driving acoustic field fo, 
and its harmonics and subharmonics. The discrete spectral lines exceed the continuous part of 
the spectrum by about 30 – 40 dB at low frequencies. At higher frequencies the difference 
between the levels of the continuous and discrete spectra gradually diminishes and at the 
highest frequencies (approximately >0.7 MHz [1, 2]) only continuous spectrum can be observed. 
The level of the continuous spectra measured by Tsujino [4] is about 130 dB re 20 µPa. 
 

In order to determine the theoretical autospectral densities, distributions of all random 
variables in equations (1) and (2) (i.e., N, P, ϕ, and θ) must be specified. First, all the random 
variables are assumed to be mutually independent. Second, the random variable N is assumed 
to be Poisson distributed and the random variables P, ϕ, and θ are assumed to be normally 
distributed. In accordance with the previous section, the mean values of the random variables P 
and θ are µP=3x105 Pa, and µθ=0.1 µs. The frequency of the driving field is fo=20 kHz. As can be 
verified, the value of µθ  considered here yields a continuous spectrum, which is flat up to 
approximately 1 MHz. This is in a good agreement with experimentally determined autospectral 
densities [1, 2]. 
 

The remaining mean values and standard deviations have to be selected in such a way as to 
yield the best match between the theoretical and experimental autospectral densities. An 
examination of the closed form formulas [9] revealed that the range of frequencies the discrete 
lines span is basically determined by the standard deviation σϕ of the random variable ϕ. In 
order for the spectral lines to sink into the continuous spectrum at a frequency 0.7 MHz, the 
standard deviation σϕ must be as small as σϕ=0.7 µs. This is a surprising requirement, which is 
not easy to interpret in physical terms. For example, to fulfil it, in water, where the speed of 
sound is approximately c=1450 m.s-1, the diameter of cavitation field d should be of the order 
d=c.σϕ ≈ 1 mm (otherwise, even if all bubbles in the field are compressed exactly at the same 
time, the difference in times the pulses arrive to the hydrophone from the most and least distant 
bubbles will be larger than σϕ). And this is the reason why the single-bubble cavitation noise 
model (2) has been also considered here. But in the case of the single-bubble model, both the 
continuous and discrete spectra levels lie much lower than determined by Tsujino [4]. To 
achieve the levels measured by Tsujino [4], a cavitation field consisting of about 50 bubbles has 
to be considered. Hence, the second model defined by equation (3), with mean value of pulses 
in groups µN=50, is also used. 
 

The remaining two parameters (σP and σθ) should be assigned values, supporting the 
similarities between the autospectral densities. In the case of equation (2), the values σP=5x104 
Pa and σθ=10 ns have been selected, and in the case of equation (3), they have been σP=105 
Pa and σθ=50 ns. 
 

Using the distributions and parameters specified above, cavitation noise records consisting 
of 100 periods have been simulated on a computer with a sampling frequency fs=82 MHz. 
Autospectral densities have been computed for these records with a frequency resolution 
∆f=1250 Hz. Number of averages was NA=85. The computed autospectral densities are shown 
in Fig, 1 (the single-bubble model) and in Fig. 2 (the multi-bubble model). The reference 
pressure po=20 µPa has been used to determine the levels Lp. 
 



 
 
 
 
Fig. 1. Autospectral density of simulated cavitation noise in the case of single-bubble cavitation 
 
 

 
 
 
 
Fig. 2. Autospectral density of simulated cavitation noise in the case of multi-bubble cavitation 
 
 
 

As can be seen from Figs. 1 and 2, both autospectral densities of simulated cavitation noise 
match the measured spectra relatively well. The main deviation in Fig. 1 concerns the relatively 
low levels of both continuous and discrete spectra as compared with values obtained by Tsujino 
[4]. These low levels are consequence of the assumption of single-bubble model, which 
evidently is not true in Tsujino's experiments [4]. 
 

In Fig. 2 the levels of both the continuous and discrete spectra agree with the levels 
measured by Tsujino [4] well. Even the mean number of oscillating bubbles (i.e., µN=50) is 
plausible. However, now the value of σϕ=0.7 µs seems to be unrealistic. 



CONCLUSIONS 
 

Cavitation noise models based on random pulse processes have been used to simulate 
cavitation noise records. The values of model parameters have been selected using partly the 
Gilmore's model (the mean peak acoustic pressure in the pulse, and the mean time constant of 
the pulse). The values of the remaining parameters have been selected in such a way as to 
provide the best match between the experimental and theoretical autospectral densities. 
 

The physically unrealistic small standard deviation of the random time distances of pulses 
from reference points can be overcome by assuming a single-bubble model. However, fields of 
cavitation bubbles observed in experiments will provide much higher values of the standard 
deviation. To resolve this discrepancy further research is needed. 
 

The models considered here also do not provide explanation for the subharmonic discrete 
spectral components and their harmonics. However, it seems that this could be overcome by 
introducing correlation between pulses occurring in subsequent periods of the driving field. Work 
on such an improved model is carried out at present time. 
 
 
 
ACKNOWLEDGEMENTS 
 

This work has been supported by the Ministry of Education of the Czech Republic as the 
research project MSM 245100304. 
 
 
 
REFERENCES 
 
[1] Esche R: Untersuchung der Schwingungskavitation in Flüssigkeiten. Akustische Beihefte 4, 

208-228, 1952. 
[2] Bohn L.: Schalldruckverlauf und Spektrum bei der Schwingungskavitation. Acustica 7, 15, 

201-216, 1957. 
[3] Lauterborn W, Cramer E: On the dynamics of acoustic cavitation noise spectra. Acustica 49, 

4, 280-287, 1981. 
[4] Tsujino T: Cavitation damage and noise spectra in a polymer solution. Ultrasonics 25, 67-72, 

1987. 
[5] Cramer E., Lauterborn W.: Zur Dynamik und Schallabstrahlung kugelförmiger 

Kavitationsblasen in einem Schallfeld. Acustica 49, 226-238, 1981. 
[6] Lauterborn W., Parlitz U.: Methods of chaos physics and their application to acoustics. 

Journal of the Acoustical Society of America 84, 6, 1975-1993, 1988. 
[7] Vokurka K.: Experimental study of the bubble pulse. Acustica 66, 3, 174-176, 1988. 
[8] Vokurka K.: A method for evaluating experimental data in bubble dynamics studies. 

Czechoslovak Journal of Physics B36, 5, 600-615, 1986. 
[9] Vokurka K.: Power spectrum of the periodic group pulse process. Kybernetika 16, 5, 462-

471, 1980. 
[10] Bendat J., Piersol A.: Random data analysis and measurement procedures. Wiley, New 

York 1986. 
[11] Vokurka K.: Time-frequency analysis of cavitation noise. 17th International Congress on 

Acoustics. Rome, Italy, 2.-7. 9. 2001. 


