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ABSTRACT  
 
A nonlinear layer can be a model for a cloud of gas bubbles in a liquid, a crack or split plane in a 
solid, or contact between two tighted surfaces. Solutions were derived for media under strong 
load. 
Numerical calculations based on Preisach-Mayergoyz space description (nonlinear stress-strain 
relationships typical for solids containing mesoscopic inhomogeneities or defects) have given 
results like those obtained from LISA (see results by Delsanto). 
Non-uniform massdistribution of grains immersed into a vibrating fluid create internal forces 
which is responsible for generation of higher harmonics.   
Tests on slow dynamics were performed. 
 
 
PULSE PROPAGATION THROUGH NONLINEAR LAYERS 
 
 
The problem of normal incidence of a plane wave on a layer is one of the simplest and most 
important problems in the acoustics of layered media. It attracts considerable interest for two 
reasons. First, it is rather simple, and one can look forward to obtaining the solution, which must 
be in analytical form. Second, the layer can serve as a model of a real nonlinear inclusion such 
as a bubble cloud in a liquid, or a region inside a solid with a high content of defects, or a 
resonant cavity in concrete, or a geological structure.  
The statement of the problem is a plane layer with density ρ0 and sound velocity c0 is plaved 
between x=0 and x=h. This layer is surrounded by another medium with density ρ1 and sound 
velocity c1.  
 
In the figure below is shown the additional nonlinear response from a monopolar rectangular 
incident pulse, the parameter a=2c0

2t0ρ0/(c1ρ1h). [ 1] 



 

 

In next figure is shown the total (nonlinear) response from an incident negative δ-pulse, the 
parameter a=2c0

2t0ρ0/(c1ρ1h) (the same as above). In this case the nonlinear dependence 
between  density and pressure is  ρ(p) = p*/c0

2 ln(1+p/p*). It is seen that the normalized 
pressure p/p* can not be less than –1 which defines the value of p*. This specific case has a 
analytical solution: p/p* = [(1-exp(-ap0/p*))exp(-at/t0)]/[1-(1-exp(-ap0/p*))exp(-at/t0)]. 

 

 

 

 

 
 



NUMERICAL MODELLING OF MESOSCOPIC INHOMOGENEOUS MATERIALS 
 
The P-M space phenomenological model [2], describes an assemblage of elastically elements 
called hysteretic mesoscopic units (HMU) correspond to the elastic bond system in NME 
materials. The elastic behaviour of these units are compared to atomic elasticity, very complex 
and difficult to explain. But P-M space describes an assembly containing many units and 
therefore some simplification can be done about the behaviour of these units. The element will 
close and open at different lengths depending on if stress is decreasing or increasing. 
Comparing the stresses when the element is loaded and unloaded in a graph, one gets the P-M 
space graph.  
The structure in a material can be considered in different levels. For instance there is an atomic 
structure and a crystal structure. To calculate the mechanical behaviour of a material is 
extremely time consuming when considering such small scales as the atomic structure level. 
The size of the calculation would be enormous and there would also be problems with the 
definition of several different forces that acts on the atomic structure. 

But there is also a structure considering the grains in the material, which is called mesoscopic.  
These grains in the material are defined by the arrangement of the atoms. The atomic 
arrangement will be exactly the same in one specific grain. But the orientation of the atoms in 
adjoining grains is different. 
Because of the difference of the behaviour between the grain and the grain boundary it is of 
interest to control the size and the density of the grains. Change these parameters and you get 
a different material property. Reducing the size of the grain there will be more grains and of 
course more boundary that obstructs the movement of a dislocation. Which leads to an 
increasing strength of the material. 
To be able to calculate the wave propagation in a NME material it is necessary to make some 
assumptions considering the behaviour of the grains. They are: the Young’s modulus is 
constant for all the grains; deformations are only considered in one dimension, which means 
that the phenomena of lateral contraction will not be considered; all the grains have the same 
width; and all the grains are subjected to the same stress at the same time. [3]. The most 
complex part is to describe the bond system. Many factors influence the behaviour of the bond 
system and it is impossible to pay attention to every one of these factors. It would demand an 
enormous amount of computer capacity to be able to consider every influence on the grains [4]. 
Because of the small forces and the large amount of data that have to be considered, the 
internal forces and microstructure are assumed to not influence the behaviour of the bond 
system. The external conditions are also considered to not change the behaviour. The model is 
based on the macrostructure and the bond system will be influenced from forces that act in a 
macrostructure. To be able to explain the behaviour of a material one have to explain, or in 
some way determine, the relationship between external forces and the internal behaviour of the 
material. The most common and satisfying way of explaining the behaviour of a material is to 
consider the relation between stress and strain. As has been mentioned previously the grains 
will be modelled as perfectly elastic springs, which means that the nonlinear mesoscopic elastic 
behaviour of the model will be introduced in the model through the bond system.  

 
Figure 1. How the length of interstice i depends on the traction force F. 
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The rod is first discretized as into a large number of tiny segments or masses whit length ∆l = 
(L−lint)/n where lint is the length of the interstices when the rod is unloaded and n is the number 
of segments the rod is discretized into. The segments are then divided into grains consisting of 
one or more segments. A PM-space model can be seen in figure 2. [3] 

 
Figure 2 . PM-space . 

In the stress/strain graph the stress is calculated as σ = F/Arod,  where Arod is the area of the rod. 
In Figure 3 left has been used different slopes of the interstices. 

 
 

 
 

Figure 3. Stress-strain relation using different slopes of the interstices (left) and for different 
opening and closing lengths of the interstices (right). 

In figure 3 right different elongations (lmax - lmin) of the interstices has been used. It shows that as 
the elongation of the interstice gets higher the nonlinearity gets higher.  These results are very 
similar to the results obtianed by Delsanto with the LISA software. [5] 
 
 
NONLINEAR DYNAMICS OF GRAINS IN A LIQUID-SATURATED SOIL 
 
 
Known models with huge nonlinear response of grainy media are based on nonlinear stress-
strain relationships typical for solids containing mesoscopic inhomogeneities or defects in their 
structure. Such nonlinear behaviour is well-defined at significant local deformation caused by 
high applied load, even if the load does not vary in time. However, there exist a different type of  
nonlinearity which manifests itself due to inertial forces between grains. Such forces appear in a 
moving noninertial frame of reference, in particular, if a small system of interacting particles is 
placed into a vibrating fluid. High spatial gradients of internal forces are determined by the non-
uniform distribution of mass. These gradients varying in time can excite the internal degrees of 
freedom. So, even at harmonic vibration of the fluid caused by sound, the nonlinear internal 
dynamics can be responsible for generation of higher harmonics. 
A model of grainy medium is developed as an example of nonlinearity of inertial type. The 
model deals with an ensemble of grains immersed into vibrating fluid. The inertial attractive 
forces have hydrodynamic origin, and the repulsive forces are caused by deformation of 
colliding grains. 
 



 
 
 
 
 
 
 
 

Figure 4. Two colliding grains in a fluid-saturated medium. 
 

Several interesting phenomena were observed at the computer modelling of this nonlinear 
dynamic model, including a huge higher harmonics generation. For some magnitudes of 
parameters, the effect of appearence of low-frequency vibration is well-pronounced (Figure 5). It 
is interesting that these low frequencies do not depend on the frequency of acoustic wave. This 
regime is accompanied by stochastic oscillations caused by random collisions of particles 
having unpredictable velocities. These results are shown in the following figures containing  
temporal behaviour of model (the process of the development of forced highly nonlinear 
vibrations), as well as the corresponding spectral distribution. 

 
 
 
 

Figure 5. Distance between two 
grains (top);  relative velocity 
(upper right); and the frequency 
content of the velocity (right). 
 
 
 
 
 
 
 
 
EXPERIMENTS ON NONLINEAR NONDESTRUCTIVE TESTING 
 
By using a Nonlinear Wave Slope Amplifier method the time signal response from samples can 
be used to indicate the nonlinearity in the materials connected with the presence of cracks.  
Below in Figure 6 is shown how the difference between an undamaged material on top differs 
markedly from the response from the damaged one below. 

 

Figure 6. The huge difference between the nonlinear response of an undamaged (top) and a 
damaged (bottom) metallic ring. 
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As can be seen the effect seem is immediate and but recovers more slowly. In fact this is an 
entirely new  phenomena, that the material state (damping and elastic modulus) changes for up 
to hours after some conditioning. This can be measured by for example resonance frequency 
monitoring as i seen in Figure 7 . It can not be described by the PM space model above. For 
some time it was believed that it was due to phenomena on the mesoscopic level,[6] but indeed, 
late discoveries indicate that the phenomena are not on the mesoscopic scale, but smaller – 
probably atomic, in origin. This phenomena is called Slow Dynamics (SD). A ’large’ amplitude 
wave alter temporarily the material through which it passes ! Of great consequence is that SD 
can be used for nondestructive, noninvasive diagnosing and monitoring of damage, disbonding 
etc. In fact, there is no more sensitive diagnostic of material “damage” than SD to our 
knowledge.[7] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Slow dynamics measured by resonance monitoring for two damaged and two 
undamaged samples. 
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