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ABSTRACT 
 
A method for optimizing structures numerically with respect to structure borne sound is pre-
sented. The finite element method (FEM) is used to calculate the surface velocities of a vi bra-
ting structure. Powell's COBYLA algorithm is then used to modify the geometry of the structure 
(i.e. the wall thickness) in such a way that the level of structure borne sound is reduced whereas 
the mass of the structure does not increase. A new FEM input file is generated and the whole 
process is repeated iteratively until a stop criterion is met. Improvements of more than 6 dB are 
achieved. 
 
 
INTRODUCTION 
 
For many reasons (environmental aspects, health, legal regulations, etc.) it is desirable to re-
duce the sound power emitted by a machine structure (e.g. gear box, engine block, etc.). One 
way to achieve this is to reduce the so-called level of structure borne sound by means of geo-
metric modifications. From the equation 
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it can be seen [6] that the level of radiated sound power (f)LP  at frequency f can be written as 
the sum of the level of the exciting force )(F fL , the level of the radiation efficiency )(fLσ , and 
the level of structure borne sound )(2

thS
fL  defined in equation (3). Therefore, it can be assumed 

that a significant reduction of the level of structure borne sound can lead to a significant reduc-
tion in the radiated sound power level as well. 
 
The paper presented here is a continuation of Hibinger’s work [4]. He optimizes the level of 
structure borne sound by applying sequential linear programming (SLP) to three-dimensional 
model structures consisting of rectangular plates. Differences and improvements include the 
usage of Powell’s COBYLA algorithm, the use of three-dimensional solid elements for the FE 
models which offer more flexibilty, and the implementation of spline functions to reduce the 
number of design variables. 



NUMERICAL OPTIMIZATION 
 
 
The COBYLA Algorithm 
 
The COBYLA algorithm (Constraint Optimization BY Linear Approximation) by Powell [7,8] is a 
sequential trust-region algorithm which tries to maintain a regular-shaped simplex over the 
iterations. A sequence of iterations is performed with a constant trust-region radius. Only if the 
computed objective function reduction is much less than the predicted reduction the trust-region 
radius is reduced.  
 
COBYLA uses an estimation of gradients by linear interpolation of the objective function. There-
fore, no derivatives of the objective function have to be calculated which reduces computation 
time. 
 
The objective function )(xF  which is a function of a vector of design variables x  is to be mini-
mized subject to constraints ),,2,1(0)( mic i K=≥x . It is substituted by a merit function [7] 
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where µ  is a parameter which is adjusted automatically. The subscript + denotes the ex-
pression in square brackets is replaced by zero if its value is negative. Therefore, )()( xx F=Φ  
holds whenever x  is feasible. This is an elegant way to incorporate the constraints into the 
objective function.  
 
 
The Optimization Procedure 
 
After creating an FE model of the original structure a finite element analysis is carried out to cal-
culate the surface velocities evoked by a harmonic excitation force. The value of the objective 
function prior to the start of the iterations is then determined in a subprogram called OFAC (Ob-
jective Function And Constraints). After that, the COBYLA algorithm modifies the geometry of 
the structure (i.e. its wall thickness) iteratively in such a way that the mean level of structure 
borne sound in a frequency range (see equation (4)) is reduced while the constraints remain 
inviolate. 
 
After a new finite element analysis of the modified FE model the value of the objective function 
(i.e. the mean level of structure borne sound) and the constraints are computed again. Objective 
function and constraints are provided for the COBYLA algorithm which in turn outputs a new 
modified structure. This process is repeated iteratively until a stop criterion is met.  
 
It is important to mention here that the term “optimization“ in this context is not meant in its true 
sense. For a rather complex optimization problem like this one it would be extremely difficult or 
maybe even impossible to prove mathematically that a global optimum was found instead of just 
a local one. Therefore, we speak of an “optimized structure“ if we are able to reduce the value 
of the objective function considerably (e.g. by at least 50%). Because of this it would be more 
precise to speak of an “improved structure“. 
 
 
The Finite Element Model 
 
The pre- and post-processing software MSC.Patran is used to model the original structure. 
Figure 1 depicts a rectangular plate (350×233.33×4 mm3) made of steel (density 

7850=ρ kg/m3, elastic modulus 11100405.2 ⋅=E N/m2, Poison’s ratio 3.0=ν ). A harmonic 
force F excites the plate at the location shown in figure 1. The FE-software ABAQUS is used for 
the FEM analysis. The plate shown in figure 1 consists of 96 three-dimensional 20 node solid 
brick elements of the type C3D20 and is simply supported along its edges. Damping is assumed 
to be frequency independent with a constant modal damping coefficient of 0.4%.  



 
 

Figure 1: Original FEM model of the plate to be optimized 
 
 
Objective Function And Constraints 
 
The objective function for the optimization presented in this paper is the mean level of structure 
borne sound within a frequency range. From the effective surface velocities )(~ fv i  determined 

by the FE analysis, the mean squared transmission admittance )(2
t fh  and the level of structure 

borne sound )(2
thS

fL , respectively, are calculated by [6] 
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where n is the number of nodes at the sound radiating surface, )(~ fF  is the effective excitation 

force, S is the radiating surface, and )Ns(m1025 22416
0

2
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−⋅=hS  is a standardized reference 
value. 
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fL  is the spectrum of the level of structure borne sound which is a function of frequency f. 

For an optimization procedure, however, it is necessary to have a scalar objective function 
)(xF  which depends on the vector of design variables x  only. Therefore, a mean level of 

structure borne sound over a frequency range from minf  to maxf  
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is calculated by numerical integration [10] to serve as the objective function for the optimization. 
 
The original plate structure has a constant wall thickness of mm40 =t . mm1min =t  and 

mm10max =t  are chosen as the lower and upper limit, respectively, for the wall thickness of the 
optimized structure. Furthermore, the upper limit for the total mass of the optimized structure is 
chosen to be equal to the total mass of the original structure ( kg564.20max == mm ).  
 
 
Employing Spline Functions 
 
The wall thicknesses at the surface nodes are the design variables x . From figure 1 it can be 
seen, that even for this rectangular plate the number of design variables is quite large which 
increases computation time. Therefore, it is desirable to somehow reduce the number of design 
variables. 
 



This can be achieved by using spline functions to modulate the wall thickness distribution over 
the surface of the structure [9]. In this way it is not necessary to fit the spline surface to the 
surface of the FE model prior to the beginning of the iterations which would be another (time 
consuming) optimization problem by itself. The FE discretization and the spline discretization 
are completely uncoupled. Therefore, the spline formulation can be changed any time without 
having to fit the spline surface to the FE surface anew which is another advantage. 
 
Prior to the start of the iterations the thickness distribution of the original structure ),(0 yxd  is 
determined. The wall thickness at the grid point ),( yx  is then modified during the iteration 
process by e.g.  
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where ),( yxS  represents the value of a spline or polynomial function at the respective grid point 
[9]. In contrast to the approach presented in an earlier paper [2] where 3D Hermite spline 
functions are used, 3D bicubic spline functions are implemented here. Figure 2 depicts an 
example of a surface created by a bicubic spline function consisting of 7x5 key points [1,3,5]. 
 

 
 

Figure 2: 3D bicubic spline surface (7x5 key points denoted by dots) 
 
 
NUMERICAL RESULTS 
 
An IBM RS/6000 43P-140 workstation with 384 MB RAM and 233 MHz is used for the optimiza-
tion calculations. Self-made Fortran routines and UNIX shell scripts are used besides the 
commercial software mentioned above. 
 
An optimization result for the rectangular plate depicted in figure 1 can be seen in figure 3. Obvi -
ously, the algorithm tries to increase the wall thickness of the plate at the location of the excita-
tion force, therefore increasing the input impedance. The wall thickness distribution can also be 
interpreted as a stiffening rib across the plate reducing the level of structure borne sound at the 
first eigenmode. The wall thickness along the edges of the plate is held constant during the 
optimization process. 
 
Figure 4 shows a plot of the number of iterations versus the mean level of structure borne 
sound. COBYLA varies the z co-ordinates of the 35 key points of the 3D bicubic spline function 
(design variables x ) mentioned above. The circles denote feasible results, i.e. the objective 
function is reduced without violating any of the imposed constraints. The mean level of structure 
borne sound is reduced by more than 6 dB from 83.8 dB to 77.6 dB within a frequency range 
from 0 to 3000 Hz (see figure 5). 



 
 

Figure 3: Geometry of the optimized plate (scaled by a factor of 5 in z-direction) 
 

The stop criterion is chosen to be a relative change of less than 0.001% between the objective 
function values of two consecutive feasible results. This criterion is met after 363 iterations (see 
figure 4). With the bicubic spline formulation implemented here it takes 500 iterations to reach 
the same mean level of structure borne sound (i.e. 77.2 dB) that is reached after 447 iterations 
using the Hermite spline functions in [2]. After 447 iterations (the number it takes to reach the 
same stop criterion as in [2]) the mean level of structure borne sound is reduced to 77.3 dB. 
 

 
 

Figure 4: The course of the optimization process (circles denote feasible results) 
 
The spectra of the level of structure borne sound of the original and the optimized plate, respec-
tively, are depicted in figure 5. Due to the optimization not only is the mean level reduced but 
also the peak level at the first natural frequency is reduced from 105.8 dB to 99.8 dB. The first 
natural frequency is shifted from 257.4 Hz to 327.7 Hz so that the quasi-static frequency range 
with its low level of structure borne sound is advantageously extended. 
 
 
SUMMARY 
 
A simple three-dimensional structure, i.e. a simply supported rectangular plate is optimized with 
respect to the level of structure borne sound using Powell’s COBYLA algorithm. Three-dimen-
sional bicubic spline functions are utilized to vary the wall thickness of the plate. In this way the 
number of design variables can be reduced drastically from 77 to 35. The mean level of 
structure borne sound over a frequency range from 0 to 3000 Hz which serves as the objective 
function is reduced by more than 6 dB. In comparison with the bicubic spline functions imple-
mented here the Hermite spline functions used in [2] seem to have some advantages concer-
ning the convergence rate of the optimization process. 



 
 

Figure 5: Results of the optimization procedure 
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