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ABSTRACT 
 
A novel homogenization method for complex structures utilizes a local/global separation of the 
low and high wavenumber spectrum.  The low-wavenumber global problem has infinite-order 
operators. The local problem provides transfer functions for the global problem.  The global 
problem is self-contained; local solutions are reconstructed afterwards. Using Local/Global 
Homogenization, the global problem is solved at a resolution lower than the flexural wavelengths 
on the structure.  As an example, oblique sound reflection from a flexible barrier with impedance 
discontinuities is analyzed.  Radiating acoustic modes are contained in the smooth global 
problem, and evanescent acoustic modes are contained within the global structural operator. 
 
INTRODUCTION 
 
Many important structures have discontinuities such as ribs, stringers, braces, and/or 
attachments placed at regular intervals. Ribbed hulls, aircraft fuselages, and truss structures are 
examples.  These structures may be periodic, or quasi-periodic, depending on whether the 
discontinuities are identical and equally spaced.  When forced at a single frequency, the response 
occurs in a broad spectrum of spatial wavenumbers due to the discontinuities.  Furthermore, 
structures such as fuselages and hulls are fluid loaded, which alters their response. The structural 
motion and the acoustic radiation, scattering, and/or interior sound field may be of interest. 
 
Calculating the motion of such structures is a complex and computationally expensive task.  The 
disparity of scales requires high numerical resolution.  The forcing may be a series of locally 
applied forces or continuously distributed forces having a spectrum of wavenumbers. If the 
structure is spatially periodic, the response will exhibit stop-and-pass bands and the wavenumber 
spectrum will be discrete.  If it is not strictly periodic and certain forms of coupling are present, 
there will be a distributed wavenumber spectrum, and the response may exhibit localization. 
 
The low wavenumber (long wavelength) portion of the response is often of primary interest, since 
it models the gross vibratory response of the structure.  Also, for fluid loaded structures, the low 
wavenumber part of the response corresponds to supersonic phase speeds, which are most 
efficiently coupled to the acoustic field.  This paper presents results of ongoing research1,2,3 to 
formulate self-contained governing equations that describe directly the low wavenumber 



response of spatially periodic structures.  It is important to emphasize that this method leads to 
direct formulations of the low wavenumber problem.  In particular, it is not a matter of solving the 
full problem and subsequently isolating the low wavenumber part of the solution.  This formulation 
for the low wavenumber part of the solution is self-contained, and indeed, the high wavenumber 
content can be reconstructed after the fact using information from the low wavenumber solution.  
The present work shows that it is possible to include fluid loading effects in a convenient manner. 
 
Because the low wavenumber problem is smooth and contains transfer function information from 
the high wavenumber part of the problem, the approach is a type of homogenization method.  
However, it differs from classical homogenization, and it is valid for the full frequency range.  The 
low wavenumber problem is smooth and global; namely, it spans the structure.  The high 
wavenumber problem involves waves typically shorter than the discontinuity spacing, and it can 
be thought of as a series of contiguous local solutions between the discontinuities.  Therefore the 
method is called Local-Global Homogenization.  Since the global problem has a known degree of 
smoothness, there are potential advantages in accuracy and efficiency if the approach can be 
extended to numerical methods. The approach is an analytical reformulation method for complex 
problems, prior to solution, to allow the calculation of the important aspects directly and efficiently. 
 
TECHNICAL APPROACH 
 
In this section, the approach will be developed in general.  Then it will be applied to the problem 
of acoustic scattering from a fluid loaded membrane, as illustrated below. 
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The goal is to divide the original problem into a global solution and a local solution distinguished 
by their low and high wavenumber content, respectively.  As shown below, the global problem will 
be smooth and have only low wavenumber content.  In the scattering problem to be solved, the 
global problem will contain a single wavenumber falling in the interval –π/2 < α0 < π/2, which 
corresponds to the wavenumber range that produces acoustic radiation for sufficiently low 
frequencies.  Note, however, that the approach can be readily generalized to include more 
wavenumber intervals in the global solution, and thereby be extended to higher frequencies.  The 
local problem, also shown below, is seen to have rapid spatial variation and to contain the 
remainder of the wavenumbers, which excite only evanescent (non-radiating) fluid modes. 
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First, consider a continuous structure, such as a membrane or plate with no fluid, having 
displacement η(x) governed by a linear differential operator D(x) and subjected to applied forcing 
F(x).  Assuming harmonic motion removes the time dependence.  Identical discontinuities having 
impedance Z(ω) are attached at intervals xn = nL. The governing equation is given by:  

( ) ( ) ( ) ( ) ( )xFxxxZixxD
n

n +−= ∑ δηωη  

This equation will be used to illustrate the general approach to local/global decomposition.  The 
Fourier transform is used to rewrite the equation in wavenumber space: 

( ) ( ) ( )α
π

αη
ω

αηα F
L

n

L

Zi
D

n

+





 −= ∑ 2

 

The global and local parts of displacement are defined in terms of their wavenumber domains: 
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Considering the equation separately in the global and local intervals gives the expressions: 
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where α* = α – 2πn*/L, with n* such that –π/L < α* < π/L, the wavenumber interval of ηglobal.  
Subtracting these equations and using the definitions of local and global displacements yields: 
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This important result is the Local-Global Relationship.  It allows the local displacement ηlocal to be 
eliminated to obtain a new governing equation involving only the global displacement ηglobal.  The 
local short-wave solution can be reconstructed once the global long-wave solution is known.  
Therefore, the governing equation for the global displacement in transform space is: 
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Since the global solution is defined only in the narrow wavenumber interval –π/L < α < π/L, the 
right hand side may be considered as a modified forcing (MF) in that interval only. Nevertheless, 
this modified forcing depends on the original excitation through the whole range of wavenumbers. 
The left hand side contains the transform of a new differential operator, called the global operator. 
 
The procedure beyond this point is best illustrated by the specific example of a 1-D membrane 
with attached impedances, namely 
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Thus, in this case, the transform of the global equation can be written as: 
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Without forcing, the wavenumber operator on the left side yields the dispersion relations for Bloch 
waves on the structure.  The forcing term on the right is a filtered version of the original forcing. 
 
After a series expansion of the cosines, the left side can be written as a power series in 
wavenumber α with frequency dependent coefficients.  Using the inverse Fourier transform to 



return to physical space leads to a governing equation with an infinite-order differential operator 
acting on the unknown ηglobal(x).  The functional form of the forcing on the right side can generally 
be viewed as a convolution of the original forcing and the inverse transform of the filter function.  
However, in some important cases, e.g. harmonic or periodic, it has a much simpler form.  The 
same global equation was derived earlier by Bliss and Franzoni1,2,3 using a smooth force method.  
The present wavenumber filtering approach has advantages for fluid loading cases. 
 
ACOUSTIC REFLECTION FROM A MEMBRANE WITH DISCONTINUITIES 
 
A fluid-loaded membrane with attached impedances is described by the preceding membrane 
equation with the addition of pressure forcing.  This equation is coupled to the acoustic wave 
equation through the boundary condition that matches normal velocities at the interface: 
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where c and cs are wave speeds, and k = ω/c and k s = ω/ cs are wavenumbers, in the fluid and on 
the membrane, respectively; T is the membrane tension.  In the wavenumber-frequency space 
this system can be written as: 
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Introducing the global displacement and pressure, and applying the same procedure as before to 
derive the appropriate Local-Global Relationship, leads to the following global system: 
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This system governs the exact long-wave content of membrane displacements and pressure in 
fluid.  The Local-Global relationship can be used afterwards to reconstruct short-wave content. 
 
Writing the global system in physical space variables requires an approximation to evaluate the 
sums involving the operator Df above in closed form.  The difficulty arises from the fluid loading 
term involving µ(α).  If only long waves from the global interval propagate in the fluid, then all 
other waves are evanescent. The terms in the sum corresponding to the effect of the evanescent 
modes on the global solution can be approximated as follows:  
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This approximation can be justified as follows.  For an infinite continuous membrane with fluid 
loading, when the membrane waves are subsonic, the effect of fluid loading is like a frequency 
dependent added mass, since the fluid waves are evanescent.  The wave speed of the fluid 
loaded membrane is approximately csf = ω /k sf = [T/(ρs + ρf /k sf)] 

1/2 when the wave Mach number is 
small.  It is possible to approximate the unknown k sf inside the radical with k s with good accuracy 
for fairly high fluid loading.  Then, the effective density of the membrane is (ρs + ρf /k s). 
 
In the problem under consideration, there are discontinuities that produce a broad spectrum of 
wavenumbers on the membrane.  However, between discontinuities (neglecting fluid loading) the 
waves on the membrane will have a dominant wavelength associated with k sf.  If the membrane 
waves were very subsonic, there would typically be many such wiggles between discontinuities.  
Neglecting end effects near the discontinuities, the effect of fluid loading on this part of the 
membrane could be approximated by using the effective density described above.  All of the 
wavenumbers on the membrane with discontinuities, none of which are typically k s, are simply 
adding up to make the wiggly membrane motion that looks approximately like k s between 
discontinuities.  The approximate simplification of the sum of operators above embodies this 
effect.  Although, strictly speaking it applies to lightly loaded waves that are very subsonic, it will 
be seen to work remarkably well for heavy fluid loading and higher subsonic wave speeds. 
 
It is now possible to state the global problem for the coupled system in wavenumber space: 
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Note that this important result has a form similar to the original problem formulation for the 
coupled fluid and structure, only now the operators are different and the variables are smooth.  A 
similar form also occurs upon returning to physical-space variables.  After some manipulation, a 
series expansion in powers of α,  and a transform inversion, the structural equation can be re-
expressed in physical space variables in a very simple form involving infinite order operators: 
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where the coefficients An, Bn, and Cn depend on frequency.  Along with the easily inverted 
acoustic equation and boundary condition, this equation provides a closed system for global 
displacement and pressure. When radiation occurs only in the global interval, this method 
accounts for propagating pressure waves in the fluid with the evanescent mode effect contained 
in the operator.  The summations can be accurately truncated after a few terms (typically n=4). 
 
RESULTS 
 
First, results are presented for free vibration (no incident waves or applied forcing) of the fluid-
loaded membrane with impedance discontinuities. The dispersion curves of global wavenumber 



versus frequency were solved numerically for the exact formulation, and for the approximate 
formulation for evanescent fluid loads, as described above. The real and imaginary parts of global  
wavenumber, shown below, exhibit the expected stop-band and pass-band behavior, however, 
when the global wave speed is supersonic, there is a non-zero imaginary part in the pass bands 
due to damping from fluid radiation. The curves were found by a numerical root-finding scheme. 

 
 
Next, acoustic scattering from the membrane with discontinuities is considered. The forcing 
comes from the global pressure field having prescribed incident pressure wave of amplitude P+: 
   zikxiktizikxikti
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where k x = k sinφ and k z = k cosφ, with incidence angle φ measured from the normal.  Waves 
outside the global interval start to propagate at frequency kL = 2π/(1+sinφ).  For the incidence 
angle φ = 0.6 used in the example below, only results for kL < 4.0 should be in good agreement, 
since only one propagating mode was included in the global analysis with the fluid loading 
approximation.  More propagating modes can be readily included, but this was not done for the 
example shown.  The results shown below are magnitudes of dimensionless displacements and 
reflected pressure versus frequency.  There is excellent agreement between exact and 
approximate results for frequencies below second mode cut-on. The phase accuracy is similar. 
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  w=ρcωη/P +, mass impedance case;   p=P -/P +, damper impedance case  
 
Finally, the effect of truncating the infinite-order operators in the global solution is discussed. For 
this scattering problem, numerical simulations show a good convergence for truncation beyond 
the 8th derivative (five terms in the operators since only even derivatives are present).  The 
truncated results are then indistinguishable from the approximate results shown above, within the 
appropriate range of validity (kL < 4.0).  The use of the fluid loading approximation and operator 
truncation leads to a very simple representation of the scattering problem in physical space. 
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