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ABSTRACT: A subspace projection methodology providing simultaneous solutions of the Helmholtz
equation at multiple frequencies is presented. The subspace projector is obtained with an unsymmetric
block Lanczos algorithm applied to a transfer function that is derived from the finite element discretiza-
tion of the Helmholtz problem. This approach is equivalent to a matrix-valued Padé approximation of
the transfer function. The proposed method is applicable to unsymmetric systems and allows the treat-
ment of a much wider range of practical problems, including near-field and fluid-structure interaction
computations. Numerical examples illustrate the efficiency of the method.

INTRODUCTION

In many engineering applications, the solution of the Helmholtz equation over a frequency window is
of interest. Such applications include acoustic car design as interior problem and acoustic radiation of
sound from vibrating structures as exterior example. Commonly, the approach is to repeatedly solve
the complete discretized systems of equations for each frequency of interest. As system sizes increase,
this becomes a computationally expensive, if not prohibitive, task. Moreover, for a wide range of
applications, the solution at each point of the discretized domain may not be of interest. Rather it
is desired to obtain the solution at a certain subset of the computational domain. Such partial fields
include single points in the near-field of a vibrating structure or an enclosing surface such as a sphere
for far-field computations.

To improve the computational efficiency of such multiple-frequency partial-field problems outlined
above, a Krylov subspace projection method is here presented. The method efficiently projects the
full matrix system to one of much smaller dimension, allowing by this for the simultaneous solution
over a frequency window in one step. The finite element method is used for the discretization of inte-
rior or exterior field problems. In the case of an exterior field problem, a Dirichlet-to-Neumann (DtN)
map (Keller and Givoli, 1989) is applied on the truncating surface. The matrix system is recast into
an unsymmetric transfer function form that filters the partial field out of the full solution vector. The
transfer function is further reformulated into a standard shifted form. This form involves the inverse
of the frequency-dependent system matrix, which can not be evaluated directly. Hence, a reduced-
dimension system is computed by an oblique projection of the matrix onto a Krylov subspace. The
projection is obtained by applying an unsymmetric block Lanczos algorithm of Aliaga et al. (2000) on
the standard shifted form.

MULTIPLE-FREQUENCY ANALYSIS OF THE INTERIOR ACOUSTICS PROBLEM

An inviscid compressible fluid in the domain Ω with boundary Γ is treated. Only time-harmonic vibration
with angular frequency ω is considered. The acoustic wave number κ is defined as κ = ω/c, where c



is the speed of sound. The variational form of the acoustic problem is discretized with finite elements.
Continuous piecewise-linear polynomials are chosen and the same interpolation functions are used for
the trial solution and weighting functions. Introducing the N × 1 dimensional vector p, containing
unknown nodal values of the pressure field, the system of equations

[

K − κ2M
]

p = f (1)

is obtained (see Hughes, 1987). N denotes the total number of unknowns excluding the nodal com-
ponents where Dirichlet data is prescribed. Moreover, f is the (N × 1) - dimensional load vector.
K ∈ RN×N is a symmetric positive semi-definite matrix and M ∈ RN×N is symmetric positive
definite. Both matrices are independent of the wave number κ.

Points In The Computational Domain

As outlined in the introduction, the focus here is on the efficient computation of certain restricted
regions in the computational domain. For an interior field problem, this is equivalent to choosing a
subset of nodal points from p. Arranging Nnf basis vectors ej , j = 1, . . . , Nnf in a restriction operator
E ∈ RN×Nnf gives rise to a so-called transfer function H ∈ RN×Nnf

H = ET
[

K − κ2iM
]

−1
f , (2)

whereH contains the pressure values of the points in the restricted region of interest. As already pointed
out, the results in H are of interest at multiple wave numbers κi, i = 1, . . . , Nf . To obtain Eq. (2)
for all these wave numbers, the inversion of Eq. (1) is mandatory for each κi. This is computationally
expensive. Moreover, the restriction to a small subset of all points is not exploited, since the system
matrix must be factorized in each step. To take advantage of the restriction to a subset for the solution
over a frequency window, Eq. (2) is reformulated to a standard shifted form allowing the application of
a Krylov subspace projection that reduces the system to a much lower dimension. This system is then
feasible to be solved over a frequency range with almost no extra computational cost, while preserving
the accuracy of the solution.

First, a frequency-shift parameter σi and a chosen reference value κ0 are introduced,

σi := κ2i − κ20 , i = 1, ..., Nf . (3)

This results in the expression H(σi) = ET
[

A0 − σiM
]

−1
f with A0 = K − κ20M . If κ0 is not

coinciding with an eigenfrequency of the system, the matrix A0 is nonsingular and has thus a unique
inverse. Denoting L := E ∈ RN×Nnf , R := A−10 f ∈ RN×1, and A := A−10 M ∈ RN×N , the
unsymmetric standard shifted form

H(σi) = LT
[

I − σiA
]

−1
R (4)

is obtained. Malhotra and Pinsky (2000) derive a symmetric form. This paper advances this formulation
to an unsymmetric form by allowing L 6= R and A 6= AT.

Krylov Subspace Projection Method

In the following, we briefly describe the block Krylov subspaces used herein and the block Lanczos
algorithm used to compute bases for them. The left and right n-th block Krylov subspaces are defined
as

Kn(A
T,L) = span{L,ATL, . . . ,AT

n
m
−1

L} and Kn(A,R) = span{R,AR, . . . ,A
n
p
−1R} . (5)

Note that the number n denotes the dimension of the block Krylov subspace and that we assume for
simplicity that all columns are linear independent. Since in each step blocks of column-size m and p are
added to the left and right Krylov subspaces, the number of blocks is limited to n

m
and n

p
, respectively.

The matrix A ∈ CN×N is the system matrix and L ∈ CN×m and R ∈ CN×p are blocks of left and
right starting vectors, respectively. The algorithm of Aliaga et al. (2000) applied in this work mainly



differs from other block versions of the Lanczos algorithm (see Freund, 2000) in that it allows to choose
different block sizes for the left and right starting blocks, m 6= p, which is a necessary feature for our
problem, since in general the block sizes of L and R are different.

The unsymmetric block Lanczos algorithm is based on three-term recurrences that provide a projection
of a N ×N -dimensional matrix A onto the Krylov-subspace Kn(A,R) of much lower dimension n×n.
It creates two bi-orthogonal sequences

W n = [w1,w2, . . . ,wn] ∈ CN×n and V n = [v1,v2, . . . ,vn] ∈ CN×n , (6)

which form bases for the left and right Krylov subspaces in Eq. (5). The bi-orthogonality condition
is expressed in matrix form as WT

nV n = ∆n = diag{δ1, δ2, . . . , δn} with δi ∈ C being the bi-
orthogonality factors. With this notation, the actual three-term recurrences in the block Lanczos
algorithm can be written in matrix form as

ATW n =W n∆
−1
n TT

n∆n +
[

0N×(n−m) , W (`)

]

and AV n = V nT n +
[

0N×(n−p) , V (r)

]

. (7)

The rightmost terms W (`) and V (r) constitute the last blocks computed in the iteration. For these
equations, the projection matrix T n is defined. It is a banded matrix with lower and upper maximum
bandwidth m and p, respectively, whose entries are the coefficients computed during the iteration steps
of the block Lanczos algorithm. The matrix T n constitutes a projection of A onto the right block
Krylov subspace Kn(A,R). The block Lanczos algorithm has to deal with two main difficulties which
are breakdowns due to division by zero and the premature termination of the algorithm due to linear
dependent vectors in the Krylov subspaces. Both problems are remedied by look-ahead steps that avoid
the division by zero and by vector deflation that eliminates linear dependent basis vectors. To keep the
description brief, neither case is assumed to occur here. For details, the reader is referred to Aliaga
et al. (2000).

After the projection matrices and subspace bases are available, a reduced-dimension system of Eq. (4)
can be obtained by projecting the matrices from the right and left onto the Krylov subspaces K(AT,L)
and K(A,R) defined by the bases W n and V n, respectively. The reduced-dimension shifted system
is derived as

Hn(σi) = (∆
T
nηn)

T [In − σiT n]
−1

%n (8)

and is denoted by the index n as the n-th order reduced-dimension system. The matrices ηn and %n
contain biorthogonalization factors of the starting blocks L and R, respectively.

The Krylov subspace projection replaces the N -dimensional matrix problem in Eq. (4) in A by an
approximation of dimension n, n¿ N , in T n. This feature will be exploited for our acoustic problem
to obtain simultaneous solutions at multiple frequencies.

DISCRETIZATION OF AN EXTERIOR ACOUSTICS PROBLEM

In this section, the methodology is extended to exterior acoustics. In order to make the boundary-
value problem feasible for a solution with the FEM, the infinite-domain problem is transformed into an
equivalent statement in a bounded domain. For this, the infinite domain is truncated by a surface ΓDtN
and the condition ∇p · n = −BDtN(p) on ΓDtN is introduced, imposing the DtN map of Keller and
Givoli (1989) as an exact non-reflecting boundary condition. Explicit forms of the DtN operator can be
obtained for separable surfaces such as a circle and a sphere in the form

BDtN(p)=

∞
∑

n=0

zn(κR)

∫

ΓDtN

sn(x, ξ)p(ξ) dΓξ , x ∈ ΓDtN , (9)

where the DtN kernels sn(x, ξ) are the surface harmonics on ΓDtN, the zn(κR) can be identified as
radial-impedance coefficients and R denotes the radius of the circle or sphere. In a computation, the
series in Eq. (9) will be truncated after NDtN terms. It is well known (see Grote and Keller, 1995) that
this truncation may lead to a singular system matrix. For reasons that will be apparent in the next
section, we modify the DtN condition by adding and subtracting a local B1(κ) condition of Bayliss
et al. (1982), such that BDtN,mod(p) = (BDtN − B1)(p) + B1(p). For a detailed description of the



approach see Wagner et al. (2002). The variational form of the exterior acoustic problem is discretized
with finite elements, yielding the system of equations

[

K − κ2M +B1(κ) +KDtN(κ)
]

p = f , (10)

see Wagner et al. (2002) for the DtN matrices KDtN ∈ CNDtN×NDtN and B1 ∈ CNDtN×NDtN .

It was shown by Malhotra and Pinsky (2000) that rank(KDtN) = Nmod, Nmod ¿ N , and

KDtN = FΛFT , (11)

where Nmod = 2NDtN + 1 in 2D, F ∈ RN×Nmod , and Λ ∈ CNmod×Nmod . The non-zero elements in
each column of F represent the discrete surface harmonics associated with ΓDtN. F has full column
rank. It is important to note that Nmod is generally very small compared to N , Nmod ¿ N . Λ is
a diagonal Nmod × Nmod dimensional matrix containing the impedance coefficients zn. As such, the
elements of Λ depend on the wave number κ, while F is frequency independent. A more detailed
description of those matrices is given by Malhotra and Pinsky (2000) and Wagner et al. (2002).

MULTIPLE-FREQUENCY PARTIAL-FIELD SOLUTIONS IN EXTERIOR ACOUSTICS

To compute far-field solutions, we require p and ∇p · n for x ∈ ΓDtN. By expressing the pressure field
on ΓDtN in a Fourier series, we can reduce the problem of far-field computations to one where only the
modal coefficients in such an expansion need to be computed:

p(R, θ) = a0 +

NDtN
∑

n=1

(an cosnθ + bn sinnθ) . (12)

Observe that this approach yields a representation of p equivalent to the DtN series expression in Eq. (9).
Especially, the number of terms in the series must be chosen equal to the DtN series expansion for
reasons apparent in the following section. The resulting modal coefficients can be written as a complex
valued (Nmod × 1) - dimensional transfer function

Hmod := [a0, a1, . . . , aNDtN
, b1, . . . , bNDtN

]T =DFTp , (13)

where Hmod ∈ CNmod×1, Nmod = 2NDtN + 1, the columns of F ∈ RN×Nmod are the discrete surface
harmonics identical to those in Eq. (11), and D is a diagonal Nmod × Nmod matrix containing the
scalar orthonormalization constants of the discrete transformation.

Defining H ∈ CNpf×1, Npf = Nnf + Nmod as the vector of Nmod modal coefficients on the DtN
boundary and Nnf desired near-field nodal values and shifting the system according to Eq. (3) yields

H(σi) =

[

DFT

ET

]

[

K − κ20M +B1(κ0)− σiM + FΛFT
]

−1

f . (14)

The inverse in Eq. (14) exhibits a very complicated dependency on the wave number, due to FΛF T.
To make this equation accessible for our methodology as in the interior case, we simplify the frequency
dependence of the inverse of the system matrix. In the following we denote the frequency-independent
part as A0(κ0) =K − κ20M +B1(κ0). Since the matrices without the B1 operator incorporate reso-
nances at the eigenfrequencies of the interior problem, the nonsingularity of A0 can not be guaranteed
over the complete frequency range. To guarantee nonsingularity of the matrix at any frequency the B1

condition was introduced. Next, define Aσi
= A0− σiM and apply the Sherman-Morrison-Woodbury

formula (Golub and Van Loan, 1983) to express the inverse of Eq. (14) in terms of A−1σi
, which yields

for H,

H(σi) =

[

DFT

ET

]

[

A−1σi
−A−1σi

F (Λ−1 + FTA−1σi
F )−1FTA−1σi

]

f , (15)

that exhibits a simplified formulation in the sense that the inverse operator acts now only on the matrix
Aσi

. Note that Λ is a diagonal matrix, hence the inversion imposes no extra cost.



However, Eq. (15) does not exhibit the desired standard shifted structure of Eq. (4). To further simplify
the problem, observe that several repeated terms can be identified in Eq. (15). Extracting these terms
and rearranging them in a new matrix W (σi) ∈ CNpf×(Nmod+1) yields

W (σi) =

[

wF W F

wE WE

]

=

[

FT

ET

]

[

I − σiA
−1
0 M

]−1
A−10

[

f F
]

≡ LT
[

I − σiA
]

−1
R , (16)

where L = [F E], A = A−10 M , and R = A−10 [f F ]. Note that the constant matrix has been already
pulled out of the inverse operator. Since we allow unsymmetric matrices no symmetric decomposition
has been applied. Equation (16) states the unsymmetric standard shifted form of Eq. (4), which
is required to apply the block unsymmetric Lanczos process. Recall that the number of terms in
the series for p(R, θ) in Eq. (12) must equal the number of DtN terms, NDtN. This restriction is
apparent in Eq. (15), since otherwise the terms wF and W F could not be identified as shown. The
left and right block starting vectors are L ∈ CN×Npf and R ∈ CN×(Nmod+1), where the system matrix
is A ∈ CN×N . The formulation becomes unsymmetric because L 6= R. Moreover, note that no
symmetric decomposition of A0 is computed since the formulation is inherently unsymmetric.

NUMERICAL EXAMPLE

In this subsection, the main question of the gain in efficiency of the proposed multi-frequency method
in comparison to an iterative solver is illustrated.
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Figure 1: Submarine-like structure

The numerical problem is depicted in Fig. 1. A
submarine-like structure determined by a dimension-
less length parameter a = 5 is immersed in an acous-
tic medium. Neumann boundary conditions are pre-
scribed on the circular back portion of the structure
as shown. The truncating DtN surface is a concentric
circle of radius R = 7. It is one of the advantages
of the exact DtN condition that the truncating sur-
face can be very close to the sound source, hence
decreasing the effort for discretization. A frequency
range of κa ∈ [0, 40] is chosen. The finite element
discretization employs a mesh size h = 0.04 provid-
ing a minimum of 20 elements per wavelength. The
total number of degrees of freedom is N = 58793.
The mesh consists of 58188 bilinear quadrilateral el-
ements in the domain and 500 linear 1D elements on
the DtN boundary. The DtN series is truncated at
NDtN = 10 terms.

In Fig. 2 the total computational times in seconds with the multiple-frequency solver vs. the number
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Figure 2: Total computation times and speedup s with the multiple-frequency solver.



of frequencies in the frequency window are shown for a number of Lanczos iterations n = 147 and an
expansion frequency κ0a = 20. The computations are carried out on a Pentium III processor with 850
MhZ and 1 GB of core RAM. The computation time consists of two parts. There is a constant time
that is spent independent of the number of frequencies evaluated in the factorization of A0 and in
the computation of the Krylov subspace projection, respectively. The second portion increases with the
number of frequencies and is the time used in the remaining frequency loop. Even for the largest number
of 2000 frequencies the portion spent in the loop is lower than 2%. Hence, the multiple-frequency solver
is basically independent of the number of frequencies of interest.

In Fig. 2 on the right the multiple-frequency solver is compared with the solution times of a quasi-
minimal residual (QMR) solver that employs an SSOR preconditioner tailored specifically for the case
of exterior acoustics. The residual tolerance is set to 10−6 and convergence is obtained in this example
typically after several hundred iterations, depending on the frequency point of solution. As a measure,
the speedup s is depicted, which is defined as s = tSF·Nf

tMF
, where tSF is the solution time of the QMR

solver. Note that the QMR solver times vary over the frequency window due to the frequency dependent
spectrum of the matrix. Hence, a mean value is chosen to allow for comparison.

The speedup is of several orders of magnitude, illustrating the significant increase in computational
efficiency by the proposed multiple-frequency solver.

CONCLUSION

An efficient algorithm for the simultaneous solution of the Helmholtz equation at multiple frequencies
over a restricted part of the complete computational domain is presented. We treat the general case
of an unsymmetric system appearing in the treatment of both, far-field points and selected points
in the near-field of the sound source. The proposed method reformulates the matrix problem into a
standard shifted form which is projected on a Krylov subspace of much smaller dimension than the
system size. This subspace is obtained by applying an unsymmetric block Lanczos algorithm. The main
costs of the algorithm are one factorization of A0 and the evaluation of matrix-vector products with this
matrix in the Lanczos algorithm. As compared to the full factorization of the system matrix for each
frequency in a traditional direct solution approach, this accounts for the efficiency of the method. The
additional effort for the solutions of the small banded block system Eq. (8) and the dense block system
in the solution for q at each frequency is negligible. The numerical experiments show the significant
improvement in computational efficiency of the proposed method. The speedup for the solution in a
frequency window can be several orders of magnitude for the system size considered here.
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