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Abstract

We are presenting an incomplete factorization preconditioner for the boundary integral formulation
of the time harmonic Helmholtz equation in 3 D. Out of the matrix of the near field interactions of
a Fast Boundary Element Method we are constructing the preconditioner using an incomplete LU-
factorization provided in the SPARSKIT V. 2 package by Saad. This preconditioner is tested and
discussed for Restarted GMRes. The paper is dedicated to external problems only. These problems
are solved by the hyper-singular formulation of Burton and Miller. The latter results in a non-compact
operator. Especially in conjunction with non-smooth surfaces the preconditioner reduces the number
of iterations needed by GMRes significantly. Examples that are investigated are a tire noise problem
and a piston compressor.

1 Introduction

We consider only problems where we apply so—called Fast Boundary Ele-
ment Methods. Namely, the Regular Grid Method (RGM), cf. [1], and the
Multilevel Fast Multipole Method (MLFMA), cf. [2], are used to overcome
the O(N?) memory requirement of the standard BEM. These methods di-
rectly approximate the matrix—vector—product Au by

Au = (I - Anear - Afa,r)u = (I - Anear)u + Ufar(u) (1)

with a sparse matrix Ape,;. This matrix is calculated directly and stored
using standard sparse matrix techniques. The vector vy, is evaluated di-
rectly without filling the dense matrix Ag,. It is approximated either by
utilizing the Fast Fourier Transformation or a Multipole Expansion.

To suppress the spurious frequencies, we are using the Burton/Miller ap-
proach [3] with a coupling parameter o = i/k. The hyper-singular operator
appearing in this approach is not any more compact. This is one of the



reasons why iterative solvers do not converge well or even fail to converge
at all.

This paper is organized as follows. In the next section, we define the prob-
lem we are interested to solve. Section three deals with the construction
of a suitable preconditioner. This preconditioner is then applied to a nu-
merical example in section three.

2 Problem

The main goal of our work is it to use finite element surface meshes of
a structure and the nodal results of an FEM-simulation directly for the
calculation of radiated or scattered sound field of such an object using the
Boundary Element Method in the frequency domain. Hence, we like to
solve the boundary integral representation of the Helmholtz equation

p(y) + / ke, y)p(e)dT = £(y) )

or, equivalently,

Z-Ap = f (3)

with a given right hand side f representing surface loads. To suppress
the spurious frequencies we are using the Burton/Miller approach. The
appearing hyper-singular operator is a non-compact operator. Thus the
eigenvalues of A are not clustered. This results in the fact that for the
eigenvalue distribution of the matrix representing the discretization of the
integral operator iterative solvers like GMRes are not well suited (see [4]).
Further, we found that the iterative solvers are sensitive to non-smooth
surfaces. But when using finite element surface meshes we have lots of
edges and vertices on the surface. What may cause a further reduction of
the convergence rate of iterative solver. To overcome these problems arising
with the Burton/Miller approach, the application of the Fast Boundary
Element Methods, and the fact that the surface I'" is not smooth we will
apply a suitable preconditioner described in the following section.



3 Construction of the preconditioner

In the following, we want to construct a preconditioner for the (non-
symmetric) dense linear system (I — A)p = b which arise from the
discretization of a hyper-singular integral operator. Thus we will solve
the preconditioned system (I — A)M~'y = band p = M~'y. To make
GMRes performing more efficiently, we want the operator (Z — A)M™1
to be compact. Further, a suitable preconditioner M should possess the
following properties:

e only the entries of A,c, are needed for its construction
e sparse representation of M~ (O(N) entries)

e (T— AM™is compact.

There exist various ways of preconditioning for dense linear systems arising
from the Boundary Element Method (see for example [5]). The method
ideal matching our requirements among them is the Operator Splitting
Preconditioner (OSP). It’s construction is based on the fact that the prod-
uct of a compact operator with a bounded operator is compact. Thus the
operator

(T - AM™ = (T — Apear — Agar) M (4)
is compact (plus an identity) if we chose
M=T — Anear (5)

as A, is already compact because it is an integral operator with an con-
tinuous kernel.

This choice of the preconditioner satisfies all the criteria of suitable precon-
dition for our problems if we use a sparse representation of the inverse of M.
For this task some kind of incomplete LU-decomposition seems to be well
suited. In detail, we apply the routines provided in the SPARSKIT V. 2
package by Saad, namely, we are using a complex version of the lut(r, p)
routine [6]. With the parameter 7 the minimal relative size of an entry in
the factors L and U is prescribed. The second parameter p controls the
maximum number of fill-in elements per row. Hence, we can prescribe the
memory requirement with the parameter p whereas the threshold param-
eter 7 can influence the time for the calculation of the decomposition and

3



its application in the iterative solution. We like to emphasize at this point
that the time for evaluating a matrix—vector—product by the Fast Bound-
ary Element Methods is dominated by calculating v, (u). The time for the
evaluation of A,e,u and for solving LUu = z is negligible since these are
sparse matrix operations.

4 Numerical examples

We define the residual of the iterative solution at the n-th iteration step as
12 =AMy, — 8] _
10|

The iteration process is terminated if £, < 1079 is satisfied. The numerical
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1400 8

— oontinuohstopology
<<<<<< discontinuous topology 1
1200 |- = continuous topology, 1lu50 17
§2) - discontinuous topology, ilu50 1]
S s reduction of number of iterations S
8 1000 o 6
S =
S o
s S
8 s 53
= . g b=}
® S . p c
g 600 S e
5 S, - c
- K=}
%’ 400 et e e 33
E 8
R e x
200 2
0 1
200 400 600 800 1000
Frequency [Hz]

Figure 1: Sedan tire noise analysis, comparison of convergence in terms of frequency with and without
preconditioning for iterative solver GMRes

example is the model of a car standing on a rigid ground. Two surface
meshes were available- a mesh with continuous element topology having
~ 40000 elements and a mesh with discontinuous topology with ~ 25000
elements. We found that the number of iterations needed by the GMRes
grows rapidly with increasing frequency. Now, we aim on reducing the
costly part of the solution process, i.e. the iterative solution, by applying
the lut(r, p) preconditioner.

We use a fill-in parameter of p = 50. With this choice the cost of the
preconditioner in terms of memory requirement is approximately 15% of
the total memory in use at highest frequency (=~ 235 Mb). In Fig. 1 the
reduction of number of iterations needed by the GMRes solver is shown.
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The number of iterations is more then halved over the entire frequency
range. The expenditure of preconditioner calculation and its application
in the iterative solution process is negligible. So, the total solution time is
also halved.

In the unpreconditioned version, the larger model of continuous topology
(39502 elements) requires about 50 to 100 iterations more than the smaller
model of discontinuous topology (25810 elements). If preconditioning is
applied we observe hardly any differences in convergence between both
discretizations.

Concerning this tire noise example, we can summarize that performance of
GMRes is remarkably affected by the ilut(,p) preconditioner. Speedups
between two and five compared to unpreconditioned solution are reported.

5 Conclusion

The Incomplete LU-Decomposition of the matrix representing the near
field interactions of a Fast Boundary Element Method is well suited as a
preconditioner for exterior acoustic problems. It significantly reduces the
number of iterations needed by the iterative solvers investigated. The extra
time for calculation and application of the preconditioner is negligible since
the time for evaluation of Au is dominated by the evaluation of ve,(u).

Especially for problems with highly non-smooth surfaces the usage of a
preconditioner is essential as Restarted GMRes do not converge at all in the
unpreconditioned cases. Full GMRes converges slowly if no preconditioning
is applied.

The preconditioned GMRes performed the best in the low- to mid-frequency
range as long as no or only a few restarts occur. Thus, a good balance of
the memory distribution between the preconditioner and the basis for the
Krylov Space must be found. In general, a value of p = 10. .. 20 for the fill-
in parameter leads to the most efficient results. Apparently, the presented
preconditioner requires additional memory. However, a single iteration
step itself is very costly. Therefore, a reduction of the number of iterations
is often more interesting than the gain of some computer memory.
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