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ABSTRACT 

The out-of-plane displacement component of an aluminium plate-shaped rectangular 
parallelepiped, vibrating freely, is experimentally detected by a laser interferometer. The 
vibration spectrum is determined by means of the Fourier transform, which gives the lowest 
natural frequencies of the parallelepiped. In this study, flexural symmetric modes are preferably 
analysed. The natural frequencies of the plate are firstly calculated by applying the one-
dimensional beam theory and the two-dimensional plate theory of linear elastic plates. Then, the 
Ritz method with products of powers of the co-ordinates as basis functions is applied to obtain 
the lowest flexural natural frequencies. Three-dimensional solutions are obtained, unlike those 
provided by simpler theories. The experimental results are compared with the theoretical 
predictions.  

INTRODUCTION  

The vibration of the elastic plates has been a subject widely treated, both from experimental and 
theoretical points of view1, which is due to its multiple practical applications. The vibration 
spectrum of a plate can be excited and detected with an appropriate experimental set-up. A 
correct interpretation of the results allows us to obtain useful information. Some works are 
focused on free-vibration experiments2, others refer to plates vibrating under external 
excitation3. Transducers3 or optical interferometers4 are usually used as detectors. 

The elementary theory of linear elastic beams is based on the principle of Saint Venant, 
according to which, far from the points of application of forces, the behavior of a slender beam 
depends only on the resultant force and the resultant moment on each section. The elastic 
potential of a beam depends mainly on the bending moment, while tensile and shear stresses 
are usually neglected when nonnull bending moment exists. The plate is the two-dimensional 
analogue of the beam. The elementary theory of plates is based on the theory of beams; the 
only internal force that appears explicitly on that theory is the bending moment. The 
displacement of the neutral surface of a plate is usually assumed to be perpendicular to the 
plate. With this approach, the displacement is unidirectional and depends on the two 
coordinates of the points of the plate. This method provides the analytical solution of certain 
dynamic problems. 



 

The variational methods are a powerful tool of calculation. One of the used procedures is the 
Ritz method. His inventor already applied it to the study of the free vibration of a plate a century 
ago. As it is well known, the Ritz method proposes an suitable set of basis functions, depending 
on the coordinates. The displacements are assumed to be a sum of such functions multiplied by 
constants3,5. We will use as basis functions power series in the co-ordinates to certain powers. 
This selection is correct from the mathematical point of view as well as suitable from the 
conceptual point of view.  

In this work we have generated and detected an almost free vibration of an elastic test sample. 
The results are compared with those predicted by some elementary analytical theories and 
those calculated using the Ritz method implemented in Maple.  

EXPERIMENTAL SET-UP AND RESULTS  

An aluminium plate, rectangular parallelepiped-shaped, with dimensions L1= 0.09990 m, 
L2= 0.15100 m, and L3= 0.02490 m, was used for the tests in the laboratory. The mass m of the 

sample is 0.9951 kg, then its density ρ =2649 
kg/m3. Fig. 1 shows the plate and the set of 
co-ordinate axes with its origin coincident with 
the centre of the plate. The P- and S-waves 
velocities have been measured in the 
aluminium plate by the pulse velocity method.  
The transit times for a path length of 
2×0.02490 m were tp=8.030×10-6 s and 
ts=15.588×10-6 s  for the P-wave and S-wave, 
respectively. Consequently, the velocities are 
equal to cp=6202 m/s and cs=3195 m/s.  The 
elastic constants can be determined from the 
very well-known relations: 
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The magnitudes measured directly in the laboratory appear explicitly in the third term of (1) and 
(2). The values of the elastic constants obtained for the aluminium plate are G=27.04 GPa and  
ν =0.3194 (Young’s modulus being E=71.35 GPa). 

The experimental set-up for quasi free vibration is shown in Fig. 2.  The plate with its face 
x3=L3/2 forward the detection system is supported on two small rubber blocks. Therefore, its 
movement is softly restrained. Symmetrical flexural vibration is induced by applying at the 

central point on x3= -L3/2 an impact 
perpendicular to the plate. A pendulum 
consisting of a thread and a steel sphere was 
used to strike the sample. This type of 
excitation allows the plate to oscillate freely in 
its natural flexural modes, since following the 
impact no additional forces act upon the 
sample.  

The resulting vibration was detected at the 
central point on x3=L3/2. The detection 
system was a laser interferometer OP-35 I/O 
(Ultra Optec Inc.). With this system, out-of-
plane or in-plane displacement components 
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can be detected at a point with a resolution in amplitude of about 1 nm. In our case, for flexural 
oscillations, the measured component of the displacements was the out-of-plane. The detection 
principle is based on the speckle phenomenon, which is observed when coherent light strikes 
on a scattering surface producing a pattern with bright and dark spots. The size of the 
illuminated area is approximately 20 µm; consequently, detection is point-like and without 
contact. The bandwidth ranges from 1 kHz to 35 MHz, allowing simultaneous detection of 
several vibration modes. 

The interferometer works in the out-of-plane 
configuration as it is shown in Fig. 2. The 
laser beam is splitted in two by a Bragg cell; 
one with the same frequency as the original, 
the other with a frequency shifted by 40 MHz.  
The undeflected beam is focused on the 
surface of the sample. The resulting scattered 
light is collected in the direction symmetrical 
to that of the incident beam and then led to 
the beam mixer where interferes with the 
reference beam. An out-of-plane 
displacement δw, in the OX3-direction, causes 
a phase change equal to 4πcosθ δw/λ, where 
λ is the wavelength of the laser. A 40-MHz 

frequency signal, modulated in phase by the displacements, is obtained in the detector. The 
signal is processed by an demodulating unit to yield an output proportional to instantaneous 
displacement of the surface at the detection point. Finally, a Tektronic TDS-430A oscilloscope 
digitises the signal and the spectrum of the vibration is calculated using the fast Fourier 
transform (FFT). The natural frequencies will be those associated with the maximum amplitudes 
in the spectrum.  The spectrum obtained for our sample is that of Fig. 3.  The lowest flexural 
frequencies detected are f1=5360 Hz, f2=11590 Hz, and f3=18870 Hz. 

UNCERTAINTIES 

Since one of the objectives of this paper is to compare the experimental results with the 
theoretical ones, it seems convenient to calculate the uncertainty of the experimental measures 
of directly or indirectly obtained magnitudes.  

Let us apply the systematic uncertainty methodology. As it is known6, if a physical magnitude y 
is a function of a set of physical magnitudes xi, y=F({xi}), which have been measured directly, 
and they are affected by their respective uncertainties , then the uncertainty of an indirect 
measurement Uy  is estimated by means of the differential of this function using 
the absolute values of the partial derivatives, that is,                           . We will suppose that all 
the measuring instruments are well calibrated, then their uncertainties  are 
only due to their sensitivities.  

The resolution of the used Fourier analyzer is 10 Hz. The uncertainties in the measurement of 
lengths, mass and transit times are 5*10-5 m, 10-4 kg and 10-9 s, respectively. Then, the absolute 
value of the systematic uncertainties in the indirect measurement of the shear modulus, 
deduced from (1), is UG=0.08 Gpa. Analogously from (2) it is found for the Poisson's ratio 
Uν=0.0001. The values obtained for the uncertainties of G and ν  must be considered minimum 
values, because random uncertainties or calibration errors have not been taken into account. 

ELEMENTARY THEORIES 

As the problem of the general analytical calculation of the vibration mode shapes and natural 
frequencies of plates is too complicated, the obtained solutions are limited to particular cases.  

The used sample is longer than high and higher than wide, so it can be considered in a first 

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 5000 10000 15000 20000 25000 30000

Hz

A
m

pl
itu

de
  

5360 Hz

11590 Hz

18870 Hz

22910 Hz

 
Fig. 3 

ixU

ixU
iy i xU F x U= Σ ∂ ∂



 

approach like a rod of length L2, area of transversal section A=L1L3 and moment of inertia 
I=AL3

2/12. The equation for the frequencies is deduced from the theory of flexural free vibration 
of finite beams with simple free-free boundary condition:7 
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Since the first non-zero mode corresponds to β1L2 = 4.730, it results for our plate f=5826 Hz.  

A second possibility of calculation is inferred from books of elasticity8 for thin plates. It is found 
that the velocity for flexural waves, when displacements are considered out-of-plane, u1=u2=0, 
u3= u3(x1,x2,t), is given by  
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When a plate vibrates with free boundary conditions, an expectable mode is the simplest one of 
symmetrical bending, where the plate presents a longitudinal section seemed to the curve s1 
drawn in Fig. 4. Since a plate is easily deformable in the shown shape, very low frequencies will 
have to correspond to them. It is assumed in the elementary theory, that the first symmetrical 
mode can be represented by a period of a function cosine, reason why the wavelength equals 
to the length L2 of the plate. With these assumptions, the smaller frequency results to be 
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For the plate available in the laboratory, the mode with lower frequency has a frequency of 
f=21696 Hz. The expectable modes s1, a1 and s2 have been drawn in Fig. 4, in principle in 
agreement with the elementary theory. Note that all the modes have a maximum of amplitude in 
the edges and that the symmetrical ones have another maximum in the center. Since we are 
specially  interested in the symmetrical modes, we should excite them by applying an impact on 

the plate in the center. In addition, as the 
displacements are also detected in the center, 
we exclude the antisymmetrical vibration 
modes possibly generated by lack of precision 
in the impact. These reasons have led us to 
impact and detect in the center. Correct mode 
shapes are not known a priori, but it will be 
always truth that the symmetrical ones will 
have a maximum or antinode in the center 
and antisymmetrical ones a null value or node 
at this point, therefore the percussion must be 
applied into the center and the detection must 
be carried out in the center too.  

THE RITZ METHOD 

As it is well known, the Hamilton's principle postulates as fundamental equation of dynamics for 
a free system that the integral between two given instants of the Lagrange's functional of a 
system of particles is stationary. For a harmonic solution of the type ui=Ui(x1,x2,x3)sin(ωt+φ), it is 
enough to consider the maximum kinetic energy in a period of the motion 
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and the maximum potential energy 
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where εij are calculated from Uk. 

In the method of Ritz, a solution for the displacements is proposed like a linear combination of 
an suitable set of basis functions9 that verify the boundary conditions for the displacements, if 

X 2

s 1

a 1

s 2

Fig. 4 



 

these are predetermined, which is not our case. Adequate functions, chosen by us, are 
monomials formed by products of powers of the coordinates. The formed algebraic polynomials 
have unknown coefficients, whose values are found out by minimizing the difference of the 
maximum kinetic and potential energies, that is, the partial derivatives of such a difference 
respect to each coefficient must be null. The natural frequencies of vibration are obtained from 
the condition of compatibility of the set of equations, and the solution of the system gives the 
eigenvectors or coefficients. The method has as advantage that the solution can be obtained 
with the desired precision, except for the limitations of the computer and the spent time of 
computation. In addition, the obtained frequencies are always higher than the corresponding 
ones to the correct solution, reason why it is not difficult to find out the convergence by adding 
simply a new term to the polynomial. As a test of simplicity of the procedure, we have proposed 
a solution as simple as U1=U2=0, U3=a+bx2

2, which must correspond to a mode of symmetrical 
flexion. A manual calculation, that occupies less than an A4-size page, leads to the solution  
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When applying this result to our plate, its frequency results to be f=26094 Hz. 

We have developed a Maple program to apply the Ritz method to the study of the free 
vibrations of a plate. The abovementioned monomials were taken as the basis functions. In 
order to verify its accuracy, we have proposed a problem of vibrations of a cube which has 
already been solved by the Ritz method with Legendre polynomials as well as verified 
experimentally3. It is found a great agreement for the frequencies calculated by us for the lowest 
modes, which verified the goodness of our program. The used computer has been a PC, 
Pentium II.  

In a second approach for our plate, we propose a solution similar to that used in the 
two-dimensional theory of plates2,5, in which U1= U2= 0, U3= U3(x1, x2). Therefore it is a 
bidimensional theory. This time we have used for U3 a polynomial of degree P+Q such as 
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If the study is limited to the flexural symmetrical modes, the exponents of all the coordinates 
must be even. In the first calculation the exponents p,q have reached the maximum values P=0 
and Q=2; with these values the lowest natural frequecy is 26084.3 Hz. When repeating the 
calculation for 2, 0, we have got 39426.8 Hz for such frequency. Thus the first natural frequency 
is smaller for the first trial. As the smallest value of the frequency is always the nearest to the 
exact solution, we deduce that the dependency of U3 is stronger on the coordinate x2 and 
weaker on the coordinate x1, as expected by applying the elementary theory. Following this 
observation, the exponents have been increased and the calculated three first lowest natural 
frequencies for the exponents 8, 8, are 21158.5, 31981.2 and 38346.9 Hz. These results 
obtained for P and Q equal to 8 have been reached in a smaller time than a minute and the six 
significant digits are the same as those calculated with values for the powers as high as 14, 14, 
which means 64 unknown coefficients. 

In a third approach, instead of using the bidimensional theory of plates, the general case is 
studied. Displacements are assumed to depend on the three spatial coordinates and the time 
(three-dimensional theory). The study is focused on the lowest symmetrical modes. The mode 
shapes are expected to be similar to those represented in Fig. 4. In order to compare the results 
of the diverse starting hypotheses, we have proposed a first trial of components of the 
displacement such as U1=A1101x1x3, U2=A2011x2x3 and the third component has been of the type 
(9). With this hypothesis, the values of frequencies obtained were 6231.0, 13770.8 and 38346.9 
Hz. These values represent an important quantitative jump favourable to the 3D-hypothesis. 

In general and considering the symmetries of the problem in the solution, a totally 
three-dimensional solution is given by: 
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where the exponents of the coordinates in the formula of U1 are successively odd, even, odd, 
while in the formula of U2 are even, odd, odd and in the one of U3 they are even, even, even.  

With the smallest possible values for P1, Q1, …, R3, that is 1, 2, 1; 2, 1, 1; 2, 2, 2, respectively 
and after a computation time of half a minute, the obtained frequencies were 6018.6 Hz, 
13104.3 Hz and 24091.6 Hz. Insisting on the calculation and after five hours of computation, the 
three lower frequencies 5345, 11602, and 19050 Hz were obtained, with the exponents up to 7, 
6, 7; 6, 7, 7; 6, 6, 6, which means 192 unknown coefficients. 

The systematic uncertainty in the numerical calculation of the frequencies was estimated by 
repeating the last calculation but adding, or substracting if it was required, to the lengths of the 
sample their corresponding uncertainties. The same process was repeated for the values of m, 
ts and tp. This uncertainty has turned out to be 28 Hz, 62 Hz, 91 Hz respectively for the three 
lowest frequencies. Note the coincidence of the experimental result 5360±10 Hz and the one of 
the 3D-theory, 5345 ± 28 Hz.  
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