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ABSTRACT 
 
In the model of Taylor (1938) it is proposed to discuss the connection between the spectrum of 
turbulence, measured al fixed point, and the correlation between simultaneous values of velocity 
measured at two points. They are four main equations interconnected: a) the spectrum curve; b) 
the correlation between simultaneous values of velocity of turbulent motion at distance of 
propagation axis; c) the curvature ( χ ) of the curve drawing aforementioned and distance of 
propagation axis; d) the equation between (χ ) and dissipation of energy. The aim in this paper is 
to deduce a spectrum curve modified using an new relationship between (χ ) and ours values 
dissipation of energy from another publications. 
 
 
 
1. INTRODUCTION 
 
Most of the viscous fluids have a practical interest when they are subjected to a turbulent regime. 
It is important to observe the effects that can produce the addition of interference factors on the 
regime of movement of a fluid. An example of perturbation factor would be a sound wave. In 
previous works the dissipation energy consequence of interaction with a sound wave was studied 
in a turbulent flow. Now, are analyzed the changes that take place at the turbulence spectrum 
comparing two alternative situations: with and without sound wave. 
 
 
 
2. BASIC EQUATIONS IN AN INFINITE MEDIUM 
 
Starting from the work of G. I. Taylor (1937) settles down the connection between the turbulence 
spectrum and the correlation among the turbulence spectrum and the correlation of simultaneous 
values of speeds measured in two points. 
 
If the component of the speed of the turbulent movement () in a fixed point in the direction of the 
flow is discomposed in a harmonic series, the square of the mean values of the speed can be built 
starting from the sum of the contributions of all the frequencies. If it is the contribution of the 



 

frequencies understood among and, then. If we represent in front of the frequency the spectral 
curve it is obtained. 
 
If the component of the speed of the turbulent movement (u ) in a fixed point in the direction of the 
flow is discomposed in a harmonic series, the square of the mean values of the speed can be built 

starting from the sum of the contributions of all the frequencies. If )(2 nFu  it is the contribution of 

the frequencies understood among n  and dnn + , then 1 )(
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against the frequency n  the spectral curve it is obtained. 
 
When the whirls are big the correlation xR  among the simultaneous values of u  at the distance 

x  it should descend as increases x . It can be anticipated that when the curve ( xR , x ) has a 

small slope in the coordinate x  the curve )(nF  will extend to big values of the frequency and vice 
versa. 
 
If the speed of the air current that produces the whirls is much bigger that the speed of the 
turbulence, it can be supposed that the sequence of changes in u  in a fixed point are only due to 
the unaffected turbulent pattern's change of movement on the point, for example it can be 
supposed that, 
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where, U  is the speed of the current in turbulent regime and x  it is measured instantaneously 
upwind in 0=t  from the fixed point where u  it is measured. For small values of u  is defined xR  
in the following way, 
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The term 2u  can be expressed like a sum of harmonic terms. So being )(tu φ=  and 
denominating, 
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it can be demonstrated that, 
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On the other hand we have that the quantity, 
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it is the contribution to 2u  when it is originated starting from components of frequency among n  



 

and dnn + , for example, 
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Consequently, substituting this result in the equation (1) it is obtained, 

∫
∞

=






 +

=
0

2

2
cos )(

 )(
dn

U
xn

nF
u

U
x

tt
Rx

π
φφ

 

The form of this equation is similar to the integral of Fourier. If we determine the Fourier 
transformed of )(nF  it the following result is obtained, 
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As a consequence, xR  and 
π22

)( nFU
 are mutually Fourier transformed. The advantage of this 

result consists on calculating xR  starting from measured values of )(nF , and inversely, knowing 

values of xR  the spectral curve )(nF  can be calculated, 
 
In Taylor studies it is defined a parameter of great interest. It is the curvature (λ ) of the defined 
curve [ ]xRx,  by the equation, 
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In the case of an isotropic turbulence the parameter λ  can be calculated measuring the 
dissipation of the energy. This fact constitutes the point of union with studies about energy losses. 
More accurately, with the study of energy interference that produces a sound wave in their 
displacement through a turbulent regime. 
 
We admit the equation proposed by Taylor that relates the parameter λ  with the dissipation 
energy, 
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in which A  is a constant that has a value of 12.2 ; ν  the dynamic viscosity of the fluid; U  the 
speed of the current in turbulent regime; γ   the dissipation of the energy and M  the size of the 
mesh that produces the turbulence. 
 
The objective of the present study is to determine the turbulence spectrum starting from values of 
energy dissipation, which incorporated to the equation (4) allow to calculate the parameters λ  
and these parameters, substituted in the equation (3) and (1) determine finally the turbulence 
spectra. 
 
In the equation (4) it can be incorporated dissipation values which are obtained from certain 
effects, i.e. a sound wave, providing the differentiated spectrum of that interference. 
 
It can also be included the global dissipation, which is the addition of the losses of the turbulent 



 

flow due to their intrinsic viscosity, added to the contribution of the considered effect. Later, 
spectra of both situations can be compared. 
 
 
3. RESULTS 
 
The turbulence spectrum is determined with the equation (2), in the one that previously the 
expression xR  is calculated of with the equation (3) whose integration is, 
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Finally we have equation for the turbulence spectrum )(nF , 
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In the figures that are shown the turbulence spectrum subsequently it is represented in function of 
the frequency n  and the distance x  in address of the propagation of the turbulent current. The 
range of frequencies is of 0  to Hz 4000  and the one of distances 0  to m 3.0 . It is shown in the 
axis of frequency multiples of Hz 200 , and in that of distances multiples of m 1.0 . 
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mx  30 ≤≤ , mx  1.0=∆  

Hzn  40000 ≤≤ , Hzn  200=∆  

 
The spectra are shown varying the current speeds maintaining the values of the parameter λ ; and 
alternatingly fixing the speed to vary the parameter λ . 
 
 

 
 
Fig. 1. Turbulence Spectrum )(nF  in function of the frequency in Hz  and distance (in m ), in 

sense of propagation of the current. The current speed is 1 20 −sm  and λ  it has in this 



 

case a value of 5.0 . 
 

 
 
Fig. 2. Turbulence spectrum )(nF  in function of the frequency in Hz  and distance (in m ), in 

sense of propagation of the current. The current speed is 1 20 −sm  and it λ  has in this 

case a value of 10 . 
 

 
 
Fig. 3. Turbulence spectrum )(nF  in function of the frequency in Hz  and distance (in m ), in 

sense of propagation of the current. The current speed is 1 80 −sm  and it λ  has in this 

case a value of 5.0 . 
 

 



 

Fig. 4. Turbulence spectrum )(nF  in function of the frequency in Hz  and distance (in m ), in 

sense of propagation of the current. The current speed is 1 6 −sm  and it λ  has in this 

case a value of 5.0 . 
 
 

 
 
Fig. 5. Turbulence spectrum )(nF  in function of the frequency in Hz  and distance (in m ), in 

sense of propagation of the current. The current speed is 1 80 −sm  and it λ  has in this 

case a value of 10 . 
 
 
 
5. CONCLUSIONS 
 
At high speeds the spectrum presents a wavy concentric mesh around the point of Hz 2000  and 

m 5.1 ; as the parameter λ  increases the repetitions of the wavy mesh they are increased. 
 
At a slow speed the spectrum presents marked picks indicating spectral instability and same time 

it is more intense as the parameter λ  increases. In the order of 1 20 −sm  the concentric wavy 
mesh is observed also displaced toward the origin. 
 
The interferences due to an increment of the parameter λ  cause alterations from the spectrum to 
big distances and high frequencies. The increasing of the parameter owes to the contribution i.e. 
of a sound wave in displacement through a fluid in turbulent regime. 
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