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ABSTRACT : As for Cantor-like structures, structures generated from the Sierpinski carpet 
present remarkable vibrational behaviours such as localisation phenomena and scale effects 
associated with their self-similar geometry. 
The singular characteristics of structures based on the Cantor set have been discussed since 
1992 by Petri et al. [1,2] in ultrasonics and Gibiat et al. [3] in audible range. In particular, it has 
been shown that two types of vibrational modes can exist in such structures : extended modes 
(phonons) where the energy is distributed all along  the structure, and localised modes 
(fractons) where energy is trapped in just a fraction of the structure. The frequencies 
corresponding to these type of modes can be predicted recursively from those of lower order 
structures. In this paper we will present similar behaviours that we have observed in structures 
whose geometry has been  generated following that of the Sierpinski carpet. 
 
 
I –INTRODUCTION 
 
 In a former work [Gibiat, 2002] a theoretical and experimental study of the acoustical 
propagation in a waveguide with a Cantor-like structure was presented.  One of the main results 
is that of the existence of trapped modes and scale effects related with the degree of self-
similarity, results that are in good agreement with the previous results obtained by Petri et al. in 
ultrasonics [Petri 1992]. The present works deals with the same kind of study on a mechanical 
2D system consisting of a square membrane loaded with masses (positive or negative -i.e. 
holes-) whose positions are chosen so that the final object shows a geometry close to that of 
the Sierpinski carpet [Mandelbrot, 1982] . 
The loaded membrane has been studied through numerical simulations based on an algorithm 
following the same philosophy that the cellular automaton presented in Barjau et al. [Barjau 
2002].  
 In the first section we will present the iterative construction of the pre-fractal membrane. 
The second one will be devoted to the basic concepts leading to the numerical algorithm that 
has been used.  The last section will give some results showing that trapped modes are present 
on this membrane and that the same kind of scale effects are detectable as in the Cantor-like 
system.  

 
 
 
II – ITERATIVE CONSTRUCTION OF THE SIERPINSKY MEMBRANE 
 
  

The iterative process to build a Sierpinski membrane is the following: from a square 
uniform surface (which will be called Sierpinski order 0), the surface is divided into nine equal 
squares. The corners of the central one are then loaded with positive or negative masses 
(Sierpinski order 1). This operation (division and loading) is repeated for the eight remaining 



squares, thus generating a Sierpinski order 2. This process is then iterated giving the higher 
order structures (figure 1). It is obvious that this building process cannot be iterated up to infinity 
(real fractal state) for practical reasons. This is why we will speak in what follows of pre-fractal 
objects. As it is not possible to load the membrane with masses infinitely small, the frequency 
range of our study is (in terms of wavelength and so of frequency) limited by the size of the 
masses. Anyway we know from the results obtained on the Cantor-like Waveguide that the most 
important physical behaviours appear already in low order quasi-fractal structures. 

 

  
Figure 1 : Order 1 and 2 of the structure 
 
 
III – WAVE PROPAGATION ON THE PREFRACTAL MEMBRANES 
 
 The propagation of transverse waves on such a membrane can be studied through 
different approaches. A classical analytical approach is possible through a perturbation method 
The frequencies and the shapes of the modes of the loaded membrane are expressed as a 
superposition of the modal eigenfunctions of the conservative uniform membrane. Actually, the 
modal basis is truncated, thus keeping a finite number of classical modes. The truncation 
criterium is chosen according to the size of the added masses (as said in the previous section). 
 A second approach is that of a finite difference approach. It is based on the 
discretisation of the wave equation governing the wave propagation on the membrane. The 
main problems in this classic method  are the degree of discretisation of the surface, the 
description of the defects and the huge amount of memory needed for the convergence of the 
solution. 

We have used a third and different approach. The basic idea consists in replacing the 
problem of the continuous membrane loaded by masses, by a discrete problem of a mesh of 
punctual masses (some corresponding to the membrane and some to the added masses) 
connected by springs. The geometry of the mesh can be chosen with different criteria. The two 
usual geometries are the square one or the hexagonal one (figure 2). 

 



  
 

Figure 2: different  mesh geometries. 
 
 The real physical process consisting on a propagation of kinetic and elastic energy, is 

simplified so that just one kind of energy is taken into account (somehow this can be seen as a 
sampled solution where only the states of maximum velocity or maximum deformation are 
retained). It is then possible to establish a simple algorithm describing this elastic or kinetic 
process in a similar way as done by Barjau et al. [Barjau, 2002] for the case of a 1D system. For 
the case of a square mesh, this algorithm coincides with that of Smith et al. [Smith, 1992], even 
if the philosophy of construction is totally different. This approach has proved to be very efficient 
and is less power consuming than the classical finite difference methods. 
 As for the 1D systems studied by Barjau et al. [Barjau, 2002], the algorithm for the 2D 
membrane coincides with that governing the acoustical propagation in mesh of uniform 
cylindrical connected pipes (each connection or node would correspond to a punctual mass). 
The basic rules leading to the elastic cellullar automaton algorithm (ECA) are the Kirchoff 
conditions at each node. Figure 3 shows their formulation for the case of a 2,3 and 4-branches 
node. The application of these rules is known as “collision phase”. Each “collision phase” is 
followed by a “propagation phase” where the new values of the variables are shifted to the 
neighbour nodes. 
 The implementation of the propagation phase shows the main difference implied in the 
use of square and hexagonal geometries. Figure 4 shows the evolution of the wave front in a 
uniform membrane associated with a single point perturbation for both geometries. The black 
dots represent the new points reached by the perturbation at each time step t∆∆ . If  the 
fundamental length of the mesh l∆∆  is related to the time step through the wave propagation 
speed c, tcl ∆∆==∆∆ , it is clear form this figure that the square mesh implies a wave propagation 

speed of 
2

c  along the diagonals. As a consequence, the wave front will not be circular as 

expected, and the wave intensity will not be uniform. This problem is encountered in finite 
difference schemes too.  
 As a first approximation, we have implement the square ECA. Future work will deal with 
the implementation of the hexagonal algorithm. As the computation occurs only on the 
connected points the complexity of the computation is small enough to be done on small 
computers. 
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Figure 4 Evolution of the wave front in a square (a) and an hexagonal (b) mesh. 
 
  
 
 
IV  NUMERICAL RESULTS 
  
 
 The 2D Elastic Cellular Automaton (ECA) has been used to study the frequency 
behaviour of the Sierpinski membrane at various orders. The time signal corresponding to the 
tension at each point mass has been computed and the Fourier transform has been performed. 
We have limited the calculations to the case of a membrane loaded with negative masses (or 
holes).  
 In order to check the validity of the 2D ECA, we have first simulated the Sierpinski 
membrane order 0 (that is, a uniform membrane). For this case, there is an analytical solution 
for the eigenfrequencies and the eigenmodes. If the membrane side length is a and ),( yx  are 
the Cartesian coordinates whose origin is placed at one corner, the transverse deformation 

),(, yxw nm  corresponding to the (n,m) eigenmode is given by : 
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Figure 5 shows the comparison between this analytical solution (constraint given in absolute 
value) (a) and that obtained by means of the ECA (b).  
 

   
 
Figure 5(a) : (0,1) (2,3) and (6,7) modal constraints’ modes obtained analytically 
 

   
 
Figure 5(b) : modal constraints obtained with the ECA for three different frequencies 
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 As the results for order 0 are satisfactory from a qualitative point of view, we accept the 
validity of this approach for higher orders. The following figures (figure 6) show the membrane 
deformation for order 1 and 2. 
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Figure 6(a)a and 6(b):  modal constraints obtained for 551 Hz (order 1) and 547 Hz (order 2) 
 
 
 
As we increase frequency from 0 Hz to about 3000 Hz, the 3 structures seems to vibrate the 
same way and the scatterers seem to have no effect because of their size compared to the 
wave length. Anyway, the frequencies corresponding to the same mode are a bit lower for order 
1 and 2 than for order 0. These frequencies are proportional to the celerity c in a classical 
membrane, where c = (T / ρ)1/2, T is the tension and ρ is the surface weight. By analogy, we can 
compare scatterers with local weights added to the membrane. The effect of these weight is to 
increase ρ, so to decrease c and thus to decrease resonance’s frequencies. 
 
When the wave length is lower than 5 times the scatterers’ size, their effect begins to be 
important. A part of the n order structure is made with the structure of order n-1 with a scale 
effect of 1/3 (if we share the structure in 9 equal squares, only the central square is not affected 
by this transformation). As expected, this scale effect can be observed on the mode’s figure : on 
figure 4, we can see some vibrational modes of structures of order 2 corresponding to a 
frequency f, and vibrational modes of structures of order 1 corresponding to a frequency f/3. We 
clearly observe the strong analogy between the figure of n-1 order and one of the 8 peripheral 
parts of the n order one that we obtain by sharing this figure in 9 equal parts (9 squares). The 
scale effect is shown here. Anyway, the analogy is not perfect, certainly according to the 
boundary’s conditions that are different in the n-1 order structure, in the corner’s parts of the n 
order structure and in the lateral’s parts of the n order structure. We can expect that these 
differences would decrease if we were increasing the order of the structures, as we shown for 
the Cantor-like structures that increasing order were decreasing the boundary condition’s 
effects. 
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Figure 7 : scale effect between two structures’ order 
 
Another expected acoustical behaviour of the structure is trapped modes phenomenon : as 
previously observed with Cantor-like structures, for some frequencies, the multi-reflections of 
the sound on the scatterers generate resonances at precise places, and destroy the signal 
everywhere else. On figure 8, such phenomenon is visible and clearly related with the presence 
of scatterers. 
 
 

  
Figure 8 :  trapped modes for order 2 at the frequency of 7692 Hz 
  
 
 
 



 
V CONCLUSIONS 
 
 
The results obtained for the simulation  with a KCA confirm the results obtained with structures 
generated from the Cantor set (Petri et al [1][2], Gibiat et al [3]) ; scale effects and trapped 
modes are observed.  The use of a cellular automaton instead of a finite difference code gave 
us to predict some results that have to be confirmed in an experimental way.   
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