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ABSTRACT: In this paper we derive, by using homogeneisation techniques, the effective 

macroscopic equations of a porous medium composed by a solid skeleton which is completely 

saturated by a viscous and incompressible fluid. This solid part can be rigid or elastic, which 

leads to Darcy’s or Biot’s law, respectively. Apart from providing a rigurous mathematical 

justification of these models, interest of this methodology is in allowing us to obtain analytical 

expressions for the averaged parameters characterizing the acoustic behaviour of these porous 

media. A finite element method is used to calculate these matrix coefficients by solving the 

corresponding cell problems for a simple pore geometry. 

 

INTRODUCTION 

Porous media are frequently met in the nature. In general it is supposed that there are two 

phases, a solid and a fluid one, where solid can be rigid or deformable. 

 
Modelling of elastic porous materials is a classical issue, undertaken in the extensive works by 

Biot (see fundamental Biot’s papers [1] and [2] or Tolstoy [3] for a recompilation of Biot’s 

works).. Biot´s theory is used to predict the propagation of elasto-acoustic waves through 



porous media. Materials of this type are actually used in aerospace application, automobile 

industry or buildings for reducing the noise transmission. For that reasons, the demand of 

theoretical and numerical tools for a better understanding of the different physical processes 

and for obtaining accurate predictions has increased considerably during last years. 

 
The mathematical derivation of the model for the macroscopic behaviour of the porous medium 

is nontrivial since problem is not defined in some fixed domain, but with a sequence of problems 

in varying geometries. Ene and Sanchez-Palencia [4] seem to be the first to give a derivation for 

the case of rigid solid using a formal multiscale expansion and beginning from the Stokes 

system. For the case of a 2D periodic porous medium, Tartar [5] made rigorous this derivation 

while for the 3D case Allaire [6] did it. Generalisations of these results were given in other 

papers, like Beliaev and Kozlov [7] for a random statistically homogeneous porous medium. To 

the contrary, derivation of the model in the case of elastic solid is much less studied. Thus, 

derivation of the dissipative Biot’s law by homogeneisation was studied by a number of authors 

as Burridge and Keller [8], Sanchez-Palencia [5] or Nguetseng [9], but it has been recently 

when rigorous derivation from the first principles was made in Gilbert and Mikeliæ [10] and 

Clopeau et al [11]. The non-dissipative case has been derived in Ferrín and Mikeliæ [12]. 

 
Homogeneisation techniques for the derivation of the macroscopic behaviour of porous media 

allow us to obtain mathematical expressions for the coefficients in Darcy’s and Biot’s laws. This 

can replace the experimental procedures for the determination of these coefficients and aid to 

porous materials design. We refer to the paper by Biot and Willis [13] to measurement methods 

for the determination of the elastic coefficients of Biot theory. 

 
In order to describe the acoustic of porous media, among others, Delany and Bazley [14] or, 

more recently, Allard and Champoux [15] have derived methods to describe sound propagation 

through rigid porous materials. When elasticity of the skeleton is taken into account and Biot 

theory is valid, we refer to Allard [16] and references therein. 

 
Concerning numerical simulation of acoustic behaviour of poroelastic materials, Panneton and 

Atalla [17] have used a 3D finite element formulation in displacements to model a multilayer 

system, while Atalla et al [18] made it with a mixed formulation in displacement and pressure. 



In this paper we first show the macroscopic model obtained by homogeneisation, allowing us to 

get analytical expressions for the coefficients of Darcy’s and Biot’s laws. Finally, by using a finite 

element method, we solve the partial differential equations leading to these coefficients which 

are related to pore geometry and to solid and fluid properties. 

 

DERIVATION OF EFFECTIVE EQUATIONS 

The derivation of the macroscopic model for both the case of rigid and the case of elastic solid 

matrix has been made with the assumption that pores follow a periodic arrangement. Thus, 

each pore is related to an unit cell, denoted by Y, consisting in a fluid part, Yf, and a solid part, 

Ys. In the two cases studied in this paper, valid in three dimensions, we assume connected solid 

and fluid parts of the porous media.  

 

Rigid Porous Medium 

Beginning from the Stokes system and using a formal multiscale expansion, the first order term 

leads to the linear relation, known as Darcy’s law, linking the seepage velocity, v, with the 

pressure drop (see [19] for details) 
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with K, the permeability tensor, given by 
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where { iw , iπ } is the unique solution of the following problem defined in the fluid part of the 

periodic cell 
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The model obtained can be considered as a generalisation of that obtained by Allard and 

Champoux [15], where solid has been supposed isotropic. In [15] the parameter characterising 



the porous medium is the flow resistivity, σ, while in the model presented in this paper it is the 

permeability. Relation between them is established as 

,1−= K
φ
µσ  

where φ is the porosity and µ is the fluid viscosity. 

 

Elastic Porous Medium 

Beginning from the linear elasticity system and Stokes system, one can use the notion of two-

scale convergence to obtain the effective equations for this poroelastic medium and to prove the 

convergence results when the contrast of property number is of order ε2 (see [11] for details), 

which means that the normal stresses of the elastic matrix are of the same order as the fluid 

pressure. The system thus obtained can be compared with Biot’s one and coefficients identified. 

These coefficients can be calculated as averaged values of the solutions of systems of partial 

differential equations given both in the solid and fluid parts of the cell. More precisely 
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which are calculated from the solutions of the following boundary-value problems: 
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Finally, the Biot system for the diphasic effective behaviour is 

[ ]

( )[ ] ττρτρφ

ττ
τ

ρττρ

dxFt
dt
d

eFpBI

uDAdx
u

x
x
p

t
dt
d

e
t
u

t

jfij
ji

i
H

x

x
H

x

t j
f

j
ij

ji
i

∫∑

∫∑

−Α−=−+

+−












∂
∂

+
∂
∂−Α−

∂
∂

0
,

0 2

2

,
2

2

),()(div

)(div),(),()(
 

.div:),()(

),(
1

),()(

0
2

2

0
,

0
,

∫∫∑

∫∑

∂
∂+







∂
∂=







∂

∂
−Α−







−












∂
∂−−Α+

∂
∂

sY yx
Hjt

ij
ji

i

t

jf
jij

ji
ix

dyw
t
p

t
u

DCdx
u

t
dt
d

e

dx
x
p

xFte
t
u

div

ττ
τ

τ

ττ
ρ

ττφ

 

 

NUMERICAL RESULTS 

The different cell problems written in the previous section have been solved for the following 

periodic cell, where both fluid and solid parts are shown in next figures 

  
Fluid part of the cell: Yf Solid part of the cell: Ys 

 
For that porous medium we consider that solid is isotropic. The porosity is 0.648 and the 

physical values considered in this academic test for the fluid and the solid are 

Young modulus = 7 109 Fluid viscosity = 0.01 kg m-1s-1 
Poisson coefficient = 0.2 Fluid density = 0.2 kg m-3 
Solid density = 400 kg m-3  



After solving the above equations by using a continuous piecewise linear finite element method 

in a tetrahedral mesh for the problems in the solid part of the cell and a mixed finite element 

method for the fluid part, we obtain the following values for coefficients in the macroscopic 

model, where I  is the identity 3x3 matrix: 

• Rigid solid part 

Permeability = 0.00285 I  

• Elastic solid part 

∫
sY y dyw0div = −4.89 10-11 
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where ijM  is a symmetric matrix with all zero elements exception made of ij and ji-elements 

which are 1.7 109. 
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