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Abstract 
The coherent propagation of elastic waves through a (two dimensional) solid filled with randomly 
placed dislocations is studied in a multiple scattering formalism. Expressions are obtained for the 
index of refraction and attenuation length (also called elastic mean free path) for both screw and 
edge dislocations. While the former is easily obtained to first order through elementary arguments, 
the latter necessitates a careful calculation to second order.  
 
 
We report here results on the coherent propagation of elastic waves through an elastic medium 
filled with randomly located dislocations. The behaviour of waves in random media has a long and 
distinguished history of scholarship and the literature is [1-3]. Current interest stems at least from 
two sources: the possibility that disorder will induce a change in wave behaviour from transmission 
to diffusion to localization [4-6], and the enhanced understanding of radiation transfer [7] their study 
has allowed. 
 
Our motivation for this study, however, comes from the desire to explore possible new non intrusive 
methods to study the properties of dislocations in materials.  There are of course many situations of 
interest in the study of the mechanical properties of materials where crystal defects play a crucial 
role and transmission electron microscopy (TEM) appears to be the only technique of choice to 
characterize such defects in the bulk [8].  Would it be possible to develop new tools?  Our results 
herein suggest acoustic waves could be used as a sensitive probe of dislocation structure.  Such a 
tool would be useful, for instance, to study plastic deformation, current studies thereof underlying 
how important its fundamental heterogeneity is [9], also to improve current understanding of the 
brittle-to-ductile transition [10], and of the role played by dislocations in continuous melting [11].  Of 
course, the interaction of elastic waves with cracks and inclusions in elastic solids has been the 
object of much attention in the non-destructive-evaluation literature [12]. 
 



Topologically, dislocations in an elastic continuum are quite similar to vortex filaments in a fluid, and 
the coherent propagation of an acoustic wave through a fluid threaded with a random array of 
vortices has been the subject of a recent investigation [13,14]. The basic mechanism for the 
scattering of an elastic wave by a line defect is quite simple: An elastic wave will hit each individual 
dislocation, causing it to oscillate in response. The ensuing oscillatory motion will generate outgoing 
(from the dislocation position) elastic waves. When many dislocations are present, the resulting 
wave behaviour can be quite involved because of multiple scattering. 
However, under some circumstances, there may exist a coherent wave propagating with an 
effective wave velocity, its amplitude being attenuated because of the energy being scattered away 
from the direction of propagation. This is the subject of the present research, in the case of a two 
dimensional continuum. There are two cases of interest: the anti-plane case, which corresponds to 
a scalar wave equation  for the velocity of the  elastic wave in interaction with screw dislocations, 
and the in-plane case, which corresponds to a vector wave equation in interaction with edge 
dislocations. The vector nature translates into these waves being a superposition of longitudinal 
(acoustic) and shear waves. 
 
The anti-plane case  - Consider  a random distribution of N screw dislocations characterized  by 
their Burgers vectors bi and their mean positions (i.e., the position they would have in the absence 
of elastic waves) Xi = (Xi

1,  Xi
2), with i=1, …,N (Figure 1). An elastic wave propagating through such 

a medium of density ρ and shear modulus µ will be described by a displacement u(x,t) of particles 
away from equilibrium whose dynamics is best described in terms of velocity v ≡ du/dt. Following 
[15] or [16], it is easy to show that it obeys  the equation  

with 

  
 
εab is defined as ε11 = ε22 = 0, ε12 = - ε21 = 1. The source term in the right hand side assumes that the 
dislocation motion is known.  In order to have a self consistent  formulation we also need the 
response of a screw to an elastic wave. The response of a  dislocation of Burgers vector b located 
in X is given in the frequency domain, for low velocities, by [17]  

 
where M(b) is an effective mass per unit length [17,18]. 
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FIGURE 1 
 
A plane wave of frequency ω and wavenumber k0 traveling through such  a medium  will propagate 
coherently with an effective, complex, wavevector K parallel to k0 whose real part gives a 
renormalized speed of propagation, and whose imaginary part gives an elastic mean free path.  
 
In Foldy's approach [1-3], the wave resulting from the scattering by many scatterers is written as the 
sum of the incident wave vinc and the contribution of the waves scattered by all scatterers receiving 
themselves the resulting wave 

In this expression, Fi v(Xi) is the wave in x scattered by the scatterer in Xi; note that v(Xi) = limx->Xi 
v(x) is singular in this expression. Taking the average of previous equation over all configurations of 
scatterers leads to  
 

 
where n is the scatterer density, assumed uniform, and ρ(b) the distribution law for b. In this 
expression,  valid only  if chains of scattering paths which go through the same scatterer  more than 
once are neglected, <v>(X) is regular. Looking for a solution <v> as a plane wave, F<v> is then 
identified to the response vs  of  a unique scatterer, located in the origin, to an incident plane wave 
of amplitude A 

where f(θ) is the scattering amplitude, with θ the angle between k0 and x. Equation for s is solved 
for a unique scatterer in the first Born  approximation (in the equation for Vb(ω), v = vinc) and we find 

 
where β is the shear  wave speed, β2 ≡ µ/ρ. We obtain the modified wavenumber  

 
where  M* is a mean effective mass per unit length. Note the dependence on the mean square of 
the Burgers vector: the sign of the dislocations do not matter. As expected, the group velocity 
decreases in the presence of the dislocations. However, previous equation does not provide an 
attenuation length, meaning that a higher order calculation is called for. This is achieved through a 
Green's function formalism, where the correction to the wave vector is given by a mass operator, 
the solution to Dyson's equation [5],[13].  In this formalism, the source term is rewritten in the 
frequency domain by use of a potential operator V 
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In this expression, Xi is taken at its mean position. We obtain an integral equation that can be 
written symbollically as 

G =G0 + G0 V G, 
 
where G0 is the Green's function in the unperturbed medium and G the Green's function  modified 
by the presence of scatterers. Taking the average of this equation over all realizations of V leads to  

 

<G> =G0 + G0 <V G>, 
 

that can be solved when introducing the self- energy operator Σ in the Dyson equation 
 

<G> =G0 + G0 Σ<G>, 
 

In the Fourier space, the Dyson equation becomes algebraic and can thus be solved for <G> when 
the mass operator Σ(k) is known. We deduce Σ using a perturbation expansion [13,14]  to second 
order in the interaction potential V, in the limit of dilute medium 

 
Σ = <V> + <V>G0<V> - <VG0V>, 

 
The result for the mass operator is 

 
where r is a constant, of order 1, depending on ρ(b) and C is a numerical constant of order 1/π. 
Finally, the effective wavenumber is  
 

 
 
 
The in - plane case - The calculations in the in-plane case  are quite similar to the  anti-plane case 
but the wave equation becomes vectorial [15]. This case corresponds to the interaction with edge 
dislocations  of Burgers vectors bi, located in Xi (Figure 2), with the in-plane wave described by a 
vector displacement u(x,t), with velocity v 
 

with a = 1,2. cabcd = λ δab δcd + µ (δac δbd + δad δbc ) are the elastic constants and  
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Following [17], it is easy to show that the response of a  dislocation of Burger's vector b (parallel to 
axis x1) located in X is given, for low  velocities, by  

 
where va indicates va(X,ω) and M is an effective mass per unit length [17,18]. These time elastic 
waves are a superposition of longitudinal and shear waves, traveling at speeds α2  ≡ (λ+2µ)/ρ and 
β2. 

 
FIGURE 2 

 
The elementary argument to obtain the effective wave velocity of coherent longitudinal and shear 
waves is best carried out expressing the in-plane displacement in terms of longitudinal ϕ and shear 
Ψ potentials. The Foldy's approach may be extended easily to the in-plane case taking into account 
the mode conversions. The final result is that the plane longitudinal and shear waves with 
undisturbed wavenumbers kc (c = α, β) will propagate coherently with effective wavenumbers 
 

 
with Aα = β2/α2 and Aβ = 1. 
 
Again, it can be noticed that the first order indicates that the group velocity decreases in the 
presence of  dislocations. In order to compute the next  order correction an effective Green's 
function approach is needed, and the corresponding mass operator must be found.  In the present 
case both quantities are rank-two tensors. Calculations are quite similar to the calculations in the 
scalar case and the end result for the effective wavenumbers Kc (c = α, β) is  
 

 
where B = kβ

2 + β2 kα
2/α2 and C is a numerical constant of order 1/π. 

 
Conclusion - We have studied the propagation of an elastic wave in a bidimensional medium filled 
with dislocations (screw or edge) at random. For low densities, we have shown that the solid 
behaves  as an effective homogeneous medium, in which the average (coherent) wave propagates 
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with a renormalized wave speed and an exponentially decaying amplitude.  This has been 
performed using two approaches. The first one following Foldy gives the first order in the 
development of the disturbed wavenumber. In both anti-plane and in-plane cases, the first order 
only  gives access to the change in the  wave speeds. The elastic mean free path is reached thanks 
to the disturbed Green's function formalism developped at second order.  The formalism used in 
both cases appears to be applicable to structures, such as cracks and grain boundaries, that can be 
modeled as superpositions of dislocations. Work along these lines is in progress. 
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