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ABSTRACT 
Even though pure plane waves are the easiest solutions of the wave equation, it is known for a 
long time since the pioneering work of a mere handful of researchers among which Claeys and 
Leroy, that complex waves are more general solutions being able to explain certain phenomena 
(the generation of surface waves, the Schoch-effect, the influence of damping,etc.) much more 
accurately than pure plane waves do. In this work, we present hypercomplex waves as a yet 
more general solution of the wave equation. We show that every quantity that describes a 
generalized plane wave may be considered to be hypercomplex. We formulate a generalized 
law of Snell-Descartes, the dispersion relation and the reflection coefficient for such 
hypercomplex waves. 
 
 
 
THE INTRODUCTION OF HYPERCOMPLEX WAVES 
A general solution of the wave equation is written as 

( )PN rk tiAe ω−•=  (1) 

with angular frequency ω , amplitude 

4321 lAjAiAAA +++=  (2) 
polarization 

4321 PPPPP lji +++=  (3) 
and wave vector 

4321 kkkkk lji +++=  (4) 
It can be verified that 

431; ϕϕϕϕϕ ljeAA i ++==  (5) 

The numbers  
lji ,,  (6) 

are hypercomplex units comparable to the complex unit ‘i’ that obey the following multiplication 
rules [11-15]: 
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Hypercomplex numbers have a magnitude defined as 
GGG *=  (8) 

with 

4321 lGjGiGGG +++=  (9) 

4321
* lGjGiGGG −−−=  (10) 

Tedious calculations lead to 
( )443322112Re PPPPNu rk EEEEeA −−−== •−  (11) 

with for example 
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It is clear that one of the four polarizations in (11) will be equal to zero. However, if we want to 
write the acoustic displacement as a function of acoustic potentials, then we must retain 4 
polarizations in order to keep 3 in the displacement (12). 
 
 
 
THE DISPERSION RELATION 
In order for (1) to be a solution of the wave equation, the dispersion relation must hold 
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with ù the angular frequency, v the sound velocity and 0α  the intrinsic damping coefficient of 
the media. Hence, for 

âák −=2  (14) 
with á the damping coefficient and â the inhomogeneity as described in numerous texts on 
inhomogeneous waves [1-11], the following dispersion relations hold: 
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α121 k=• kk  (16) 

13 kk ⊥  (17) 

14 kk ⊥  (18) 
 
 
 
GRAPHICAL REPRESENTATION OF HYPERCOMPLEX WAVES 
In Figure 1 and Figure 2, some examples of hypercomplex waves propagating in the y-direction 
are given. The parameters used are shown in Table 1: 
 

 1k  α β  3k  4k  comments 
Fig 1a 3 0 0.1 0 0 ≈ undamped inhomogeneous wave 
Fig 1b 3 0.3 0.1 0 0 ≈ damped inhomogeneous wave 
Fig 1c 3 0 0 1 0  
Fig 1d 3 0 0 1 1  
Fig 2 3 0.3 0.1 1 1  

Table 1: The parameters that are applied to produce figure 1 and figure 2 
 
Pure plane waves have an equiphase surface directed normal to the propagation direction. In 
that equiphase surface, the amplitude is the same everywhere. Damped plane waves are 
almost the same as pure plane waves except for the fact that the amplitude diminishes 
exponentially with a coefficient á in the direction of propagation. 
 
 



If damping is concerned, a discontinuity interface between two media almost naturally induces 
the generation of inhomogeneous waves, with an equiphase surface normal to the direction of 
propagation, but with an amplitude varying exponentially with a coefficient â in that equiphase 
surface. The dispersion relation also allows inhomogeneous waves in the absence of damping. 
Hypercomplex waves are an extension of the inhomogeneous waves in that the variation of the 
amplitude inside the equiphase plane is not limited to exponential growth or decay, but can also 
be harmonic in space. Moreover, the ‘equiphase plane’ that exists for inhomogeneous waves 
can be replaced, due to the particular values of 3k  and 4k , by a ‘generalized equiphase plane’ 
in which the phase switches from a reference phase î to a phase î-ð periodically in space along 
the direction normal to the direction of propagation. Hence, the hypercomplex waves have much 
more degrees of freedom than the complex waves, whence it is plausible that some physical 
phenomena that are still unexplained using the existing wave models will be understood better 
in future exploiting the more general features of hypercomplex waves. 
 

 
Figure 1: Some examples of hypercomplex waves. 

The different parameters are shown in table1 
 
 
 
THE GENERALIZED LAW OF SNELL-DESCARTES 
If we take into account the properties derived using the dispersion relation, we may write 
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using the base 
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we  being a unit vector along the direction of propagation of the wave, ||e  a unit vector parallel to 

the interface with wee ⊥||  and ⊥e  a unit vector with ||ee ⊥⊥  and wee ⊥⊥ . We define the 
orientation as 



weee =× ⊥||  (21) 

and 
0≤•⊥ ne  (22) 

with n a normal vector on the interface, pointing to the incidence media. We denote the 
incoming wave by ‘inc’ and the refracted waves by ‘p’. The angle pϑ  is defined by 
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The angle incϑ  is defined by (23) for ‘p’ replaced by ‘inc’. 
The generalized law of Snell-Descartes becomes 

pinc ωω =  (24) 

rkrk •=• pinc  (25) 
for r lying on the interface. When the dispersion relation is taken into account, (25) yields 
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It is easily verified that (26-32) are a generalization of the generalized Snell-Descartes law for 
complex waves found in numerous articles such as [11]. 

 
Figure 2: Another example of a hypercomplex wave. The parameters are shown in table1 

 
 
 
 



CALCULATION OF THE REFLECTION COEFICIENT 
The calculation of the reflection coefficient for an interface between two isotropic media cannot 
be described in just a few pages. Therefore we shall limit ourselves to the main features of 
hypercomplex waves that must be taken into account. Most computer languages are not 
suitable to calculate in hypercomplex space as it is. Therefore it is necessary to expand all 
values and perform all algebraic calculations manually before programming. The main concern 
during the algebraic calculations is the fact that hypercomplex numbers do not commute. The 
main consequence of this is that inversion of the continuity matrix shall be limited to the right 
inverse (as opposed to the left inverse). Just as for complex waves, the continuity conditions 
must hold for (normal) stress and (normal) displacement. For an incidence direction in the xz-
plane, the y-component of the incoming wave can be separated from the xz-components, 
whence we get a continuity system of equations of the form 

( ) ( )s
y

s
y

sinc
y

inc PPRIBEP ,22,11, ψψψ =×  (33) 

( ) ( )sssincincinc PSVPSVRIAIPSV ,222,111, ψϕψϕψϕ =×  (34) 

in which ×  is the matrix product, E and I are matrices, RIA is the right inverse of a matrix A and 
RIB is the right inverse of a matrix B. 
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