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RESUMO: Um dos problemas da transcrição musical automática é o reconhecimento de notas musicais tocadas 
em simultâneo cujos harmónicos são coincidentes.  As técnicas baseadas na transformada de Fourier por 
definição não conseguem separar este tipo de sinais.  Nesta pesquisa estuda-se a possibilidade da utilização de 
outras transformadas que não sejam baseadas na transformada de Fourier: a Karhunen-Loève Expansion (KLE) e 
a Singular Value Decomposition (SVD) que demonstrámos serem equivalentes para os sinais não estacionários 
analisados.  Esta pesquisa foi efectuda com sinais musicais de piano modelados e reais. 
 
ABSTRACT: One of the problems in automatic music transcription is the recognition of notes played 
simultaneously with common harmonics.  The Fourier based techniques by definition are not able to separate 
these kind of signals.  In this paper we analyse the possibility of an implementation of a transform that it is not 
Fourier based.  The chosen transforms were the Karhunen-Loève Expansion (KLE) and the Singular Value 
Decomposition (SVD) that we showed to be equivalent for nonstationary signals.  The research is performed 
over modelled and real piano notes. 
 
1. PIANO NOTES  

 
The recognition of nonstationary signals was specially performed over piano signals 

that were considered as nonstationary signals.  First we built a simple model of the piano 
notes to study the application of KLE and SVD and then we moved to real piano notes.   

From the analysis of piano notes we decided that we could considered them as 
nonstationary signals and modelled them as transient signals with one frequency component 
(later we introduced more components), generated according to the equation, 
 
 ( ) sin(2 )it

i i i ix t Ae f tα π φ−= +  (1) 
 
where ( )ix t  is a possible event, iA  is the amplitude, iα the damping, if  the frequency, iφ the 
phase and t  the time that will vary randomly from realisation to realisation. We assign the 
same probability density function to all the parameters.  Each of these parameters iA , iα , if  
and iφ is considered to be drawn from independent uniform probability distributions.   
 
2.  THE KARHUNEN-LOÈVE EXPANSION (KLE) 

 
The KLE is a mathematical technique used in the treatment of stochastic processes.  

The KLE is an orthonormal expansion and represents any stochastic signal as a linear 
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combination of uncorrelated functions of a basis set.  The signal itself selects the optimal new 
basis set which is a particular feature of this expansion.  The analysis of the KLE theorem 
shows that it can be applied to any nonstationary stochastic signal. 

The discrete version of KLE says that if ( )ktX µ  is the ensemble of random discrete 
functions where kt  refers to discrete time and µ  is a possible realisation of the signal then: 

 

 ( ) ( )( )
1

lim
N

k N n n n
n

X t cµ µλ µ→∞
=

= Φ∑   (2) 

 
where { }Φn are a set of orthonormal eigen vectors of the covariance matrix R  whose 

elements are given by ( ) [ ]R E X Xij i j=  satisfying:    ( ) ( )
1

m n mni i
i

δ
∞

=
Φ Φ =∑                    (3) 

The coefficients of the expansion ( )nc µ  are given by: 
 

 ( ) ( ) ( ) ( )
1

1
nn n i k

i
c X tµµ λ

∞−

=
= Φ∑  (4) 

 
The eigen vectors of the expansion are the set of the orthonormal functions of the 

expansion.  The correlation matrix is a Hermitian matrix satisfying: n n nR λΦ = Φ       (5). 
 In practice the KLE is applied to stationary and weakly stationary random signals in 
the same way.  The procedures for KLE applied to those signals are: estimation of the 
autocorrelation function (the values are taken from the zero lag to the chosen maximum lag), 
creation of a square matrix of Toeplitz form from estimated autocorrelation, the eigen 
decomposition of the autocorrelation Toeplitz matrix.  The eigen vectors of the matrix are the 
vectors of the basis of the KLE and the eigen values are the corresponding energy associated 
with each vector. 
 
3. APPLICATION OF KLE TO NONSTATIONARY SIGNALS 

 
To apply the KLE to any signal implies the estimation of the autocorrelation function.  

For nonstationary signals we have to estimate the nonstationary autocorrelation function. For 
our modelled signal it was possible to determine the theoretical autocorrelation function and 
compare it with the estimated autocorrelation function by ensemble averaging.  The 
estimation is given by  TR X X=      (6),  where X is a set of possible realizations of the 
discrete signal ( X is a row matrix). We verified that both autocorrelations were quite similar 
and could replace the theoretical by the ensemble averaging.    

We built the matrix with a set of 100 possible events with 300 samples each 
(underdetermined system) of a signal using eq.1 which amplitude always was unity, the 
damping varied in the interval [ ]-0.3,-0.1  and the frequency in the interval [ ]9.5,10.5 Hz and 
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estimated the nonstationary autocorrelation function by ensemble averaging.  The absolute 
values of the nonstationary autocorrelation function of the nonstationary signal (fig.1) show 
clearly that the matrix has not the Toeplitz structure, as in the stationary case, but is still in the 
conditions of KLE.  
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Fig.1 - Absolute values of the ensemble averaged autocorrelation matrix. 

 
The eigen vectors of this matrix are the KLE basis set of our the nonstationary signal 

(fig.2 right).  The eigen values of the simulated signal (fig.2 left) are related to the energy of 
each vector. 
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Fig.2 - Eigen values of the simulated signal for the nonstationary case (left). First 

four eigen vectors for the simulated signal in the nonsntationary case (right). 
 
The first singular vector (fig.2 right) has a shape very similar to the original signal.  

All the transient characteristics of the original signal are present in this vector. The other 
vectors present modulation and the 3rd and 4th vectors appear to be a version of the 2nd vector 
moved to the right. 
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4. THE SINGULAR VALUE DECOMPOSITION (SVD) 

 
 The SVD is a mathematical method similar to the KLE also used in matrix 
decomposition.  Although similar, SVD operates over different statistical moments of the 
signal in the sense that for KLE we need to calculate the autocorrelation function and for SVD 
we simply need to form the time history matrix. The SVD becomes very convenient for 
nonstationary data characterised by an ensemble since we do not need the second order 
statistics as for the KLE. 

Any matrix ( )nmA ×  can be represented in the form of a product of three matrices 
defined as, 
 TA U V= Σ                                                 (7) 

 
where ( )U m n×  and ( )V m n× are orthonormal matrices. The matrix HV  is a Hermitian matrix 
(for real matrices, HV  is replaced by the transpose TV ).  If the rank of A is ),min( nmk = , 
the diagonal matrix ( )nm ×Σ  has k  nonnegative diagonal elements arranged in descending 
order, 
 
 ( )1 2, , , kdiag σ σ σΣ = h      (8) 
 
with real 0, 1, 2,...,i i kσ ≥ = .  These elements of the diagonal matrix are the singular values 
of the matrix A .  The columns of matrix U  and V are defined as the left and right singular 
vectors of matrix A .   
 
5. THE RELATION BETWEEN KLE AND SVD 

 
The singular values and the eigenvectors of a matrix can be related.  For a matrix 

( )nmA ×  the nonnegative square roots of the eigen values of the matrix product AAH , if 
nm ≥ , and of HAA , if nm ≤ , are said to be singular values of A  (Lütkepohl,1996).  (For 

real data HA  is replaced by the transpose TA .)  
If a matrix A , represented by equation 7, is multiplied by its transpose AT (left side 

and right side), the products will be: 
   
     ( )( ) 2T T T TA A U V U V V V= Σ Σ = Σ       (9)   and,  ( )( ) 2TT T T TAA U V U V U U= Σ Σ = Σ   (10) 
  
since the matrices U  and V are orthonormal and Σ  a diagonal matrix.   
The ensemble average estimator for autocorrelation of X  is computed as: 
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 ( ) ( ) ( )1 2 1 2
1,

n

x i i
i

R t t x t x t
n

∧
= ∑  (11) 

This estimator for the autocorrelation of a matrix X , representing an ensemble of possible 
realizations of a discrete signal, is equivalent to the product matrix (depending if X is a row 
or a column matrix): 
 

TR X X=           (6)              or                  TR XX=  (12) 
 
 The products TAA  and TA A  represent the autocorrelation matrices of the matrix 

( )A m n× (as mentioned before, depending if A is a column or row matrix.  The matrix 2Σ  is 
diagonal whose elements are the eigen values of the products and correspond to the square of 
the elements of Σ .  If iλ  are the eigen values of the matrix products and iλ and the singular 
values of A  are iς  then:             2 1, 2,3,...i i iλ ξ= =   (13). 
  The eq.9 and eq.10 show that KLE and SVD are equivalent for any matrix ( )A n m× .   
The SVD is applied over ( )A n m×  while KLE is applied over the covariance matrices TAA  or 

TA A .  Both decompositions have similar vectors and the singular values are the positive 
square roots of the eigen values.      

 
6. THE KLE AND SVD APPLIED TO SIMULATED NONSTATIONARY 
SIGNALS 

 
The SVD for nonstationary processes can be applied directly over the time history 

matrix containing the possible realisations of the signal. We tested in practice the KLE and 
SVD for signals expressed by eq.1 and concluded these transforms are similar.  The singular 
and eigen values represented are related according to eq. 13.  The singular and eigen vectors 
have similar shapes as was expected according to eqs.9 and 10, although are not exactly the 
same in some cases.  Some singular vectors have symmetric values in relation to the same 
order eigen vector.  The similarities between vectors continue until the singular values (and 
eigen vectors) become very small.  At this point there are no more similarities but the energy 
associated is very small. 

We can conclude that SVD is an equivalent technique to KLE as we saw theoretically 
and the differences pointed are not significant for our research.  The application of the SVD is 
much simpler, since we will be working directly with the time history matrix without the 
explicit need to create second order statistics. 

 
7. RECOGNITION PROCESS FOR MODELLED PIANO NOTES 

 
 This recognition process for simulated piano notes that we developed and want to 
implement has the following steps: simulate of a set of time histories with a number of 
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possible events of a signal defined by the frequency representing the pitch, decompose the 
time history matrix of the signal using SVD, project the signal for recognition in the new 
spaces defined by the basis set determined by the SVD and identification of the signals. 

All the time history matrices have the same dimension as before (100X300).  The 
frequency is the principal variable that defines a simulated signal associated, in real piano 
notes, with a pitch.  A signal is similar to another if they have similar fundamental frequency 
falling inside a certain interval of error.  The resulting singular vectors of the decomposition 
will be the “reference” of the signal.  They are the basis set of a new space where we will 
project other signals that we want to recognise.  We search for similarities between the 
projected signal and the vectors of the basis set to recognise the notes present in the signal.   

On the next figs.3 and 4 we have the examples of the signals composed by five 
frequency components (harmonics) 1s , 2s  and 12s (this signal is composed by the sum of 

1s and 2s  and simulates an octave).  They were projected on the basis set of signal 1s and 2s  to 
verify if it was possible to detect those notes on the signals and recognise the notes on an 
octave. 

 

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

0 50 100 150 200 250 300
−3

−2

−1

0

1

V
al

ue
s 

of
 p

ro
je

ct
io

ns
 (

no
rm

al
is

ed
)

0 50 100 150 200 250 300
−0.5

0

0.5

1

No. of projections

s1 

s2 

s12 

0 50 100 150 200 250 300
−2

−1

0

1

0 50 100 150 200 250 300
−3

−2

−1

0

1

V
al

ue
s 

of
 p

ro
je

ct
io

ns
 (

no
rm

al
is

ed
)

0 50 100 150 200 250 300
−3

−2

−1

0

1

No. of projections

s1 

s2 

s12 

 
Fig.3 - Projections of signals 1s , 2s , s12 

on the basis set 1Bs . 
Fig.4 - Projections of signals 1s , 2s , 

s12 on the basis set 2Bs . 
 
 The norm values for those projections can give more information about those signals. 
Through the analysis of the results projections itself can give some information about the 
presence of the note on the signal when there is a maximum value on the first projection (on 
the most energetic singular vector).  That does not always happen and we need to determine 
the norm of those projections to have more information.   

The norm of a signal when projected on its own basis set reaches the total value before 
any other signal.  A very important result was that the identification of an octave was possible 
using this method as we can see on fig.5.  
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Fig.5 - Norm of the projections of signal 1s , 2s and 12s  on the basis sets 1Bs  and 2Bs . 

 
8. RECOGNITION OF REAL PIANO NOTES 

 
 The recognition process for a real piano, based on the process for simulated notes, notes 
has the following steps: recording of the possible events of each piano note, determination of the 
singular vectors of each note, projection of the piano signals on the basis sets defined by the 
singular vectors of each note, detection of the presence of a piano notes in the musical signal.  
 For each piano note we recorded a set of 60 events played with different dynamics (and 
timbre) from piano (p) to fortissimo (ff), and with both pedals, una corda and sostenuto timbre.  The 
number of samples taken from each event took in consideration the number of periods for the 
recorded notes and the computation time.  We took firstly 2000 and then 3000 samples (2000 
samples correspond approximately to 0.045s for 44100sf = Hz, and is enough for the human 
ear to perceive the pitch of a note played (Gelfand, 1981)).  The SVD was applied first to signals 
aligned at the initial part of the attack and then with delays. 
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 Fig 7- Singular values (left) and singular vectors (right) of a piano note 

C262Hz with delays between events. 
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 The SVD of aligned events shows that the variability of the system is very small and 
can be reduced to only one dimension.  All the dynamics and the use of the two pedals do not 
give a great variability to the system. Relating this with the results of the model we can 
conclude that when a piano note is played in several possible ways the shape of the time 
history continues to be very similar and the most important change is in the amplitude. One of 
the important variables that can be introduced in the time history matrix is the delay between 
events.  With the inclusion of the delays the dimension of the system increases and the shape of 
vectors change.  This will spread the energy over more singular vectors (fig.7). The exact starting 
point of a note for recognition and the exact aligning with the singular vectors for projection is 
not a concern.  It is enough to have a value for the starting point that can have some error that 
fits inside of the delay interval of the events on the time history matrix.  It is more convenient to 
have more significant vectors for the recognition process.   
 The recognition of all the notes recorded was tested and we saw that the norm of the 
notes when projected on their own basis set reach first higher values near one.  We tested 
other notes and we conclude that the recognition of single piano notes is fully successful. 

It was possible to recognise the notes in an octave and to separate the octave from the 
note with the lowest fundamental frequency.  This recognition depends on the size of the 
sample and the frequency of the notes involved and because of that we incremented the 
number of samples from 2000 to 3000.  The rate success of this recognition was around 65 % 
for lower frequencies and 70 % for higher frequencies.  For signals composed of two notes 
separated by a tone the method it is not always able to detect the two notes.  From the studied 
cases the two notes have the maximum values but we cannot infer the number of notes present. 
 For chords composed by four notes this task becomes much more complex and the 
results were not enough conclusive.  In some cases we detect a phantom note, absent from the 
signal that can be considered as a common subharmonic of all the notes in a chord (form 
major chords). 
 
9. CONCLUSION  

 
We showed that SVD could replace KLE and proved to be a goof technique for detecting 
single notes with a 100% of matching.  It is also possible to separate notes with coincident 
harmonics as the octaves task that is not possible to do with Fourier based techniques.  For 
chords the results are more ambiguous since we detect the notes in the chord and notes that 
are absent but are subharmonics (they belong to the same harmonic series). 
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