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Abstract

Trandent dastography is a powerful tool to measure the velocity of low frequency
shear waves in soft tissues and thus to determine the second order dastic moduli p. In this
paper, it is shown how transent eastography can aso achieve the third-order eastic moduli
of an Agar-gdatin based phantom. This method requires velocity measurements of polarized
dadic waves messured in a ddticaly stressed isotropic medium. A datic uniaxia-stress
induces a transverse isotropy in solids. In this speciad case, the anisotropy is not caused by
linear dadtic coefficients but by the third order non linear dastic congtants. Consequently, the
velocity variations of the low frequency (50 Hz) polarized sher waves as function of the
applied dtress alows one to measure the third order Landau moduli A, B, C. The severd
orders of magnitude found between these three congtants can be judtify from the expresson of
theinternd energy.

Introduction

Acoustodadticity is a wel-established technique [1] to experimentaly meesure third
order dadtic condants in solids such as metas [2], crystas [3] or rocks H]. It consgts in
measuring the velocity of ultrasonic waves in dressed solids. The third order moduli are
deduced from the dope of the velocity as function of Satic hydrogtatic pressure or uniaxid
dress. So far no such measurements have been made in soft tissue since it has long been
consdered as liquid-like medium from an ultrasonic point of view. However, like in dl solids,
shear waves do propagate in soft tissues a low frequency (50 Hz typicdly) [5,6]. As it is
shown in this paper, the velocity of these shear waves are modified if the medium is submitted
to a uniaxid-stress (which is the evidence of a deviation from the Hooke's law). In such a
medium, the uniaxid-stress induces transverse isotropy [7]. Thus a quantitative evauation of
this transverse isotropy with the technique of trandent eastography leads to the measurement
of the nonlinear coefficients

|-Experiment

The experiments presented in the following section are lead in a modd of soft tissues:
an Agar-gdatin basad phantom. A 5 MHz transducer is mounted in the middle of a rod fixed
on a vibrator (Brie&Kjaer, type 4810). The whole system is gpplied at the surface of the
phantom so that the ultrasonic beam is horizontd (Fig.1). A rigid Plexiglas plate is placed on
the top and loads can be added to control the uniaxial-stress in the sample. The transducer
works as a pulse-echo system and backscattered signas sampled at 50 MHz are stored in a
2Mo memory with a recurrence frequency of typicaly 3000 Hz. The low frequency pulse (50
Hz centrd frequency) propagates in the medium as a sher wave and the longitudind
displacements are measured with a cross-corrdation agorithm between successve A-scans
[8]. This technique is known as trandent dastogrgphy [9]. On the saismic-like representation
of the displacements (Fig. 2) obtained in an ungressed medium, the maximum amplitude of
the 50Hz pulse is 120 um. The shear wave longitudinad component appears a each depth
with a phase delay inversdy proportiond to its velocity. Actudly the veocity (2.48ms?) is
extracted with a ample phase andyss a the centrad frequency. It is shown in [10] that the rod



source (80 mm long) dlows one to generate shear waves with a polarization perpendicular to
the rod in the firg centimeters. Since the velocity of shear waves in a uniaxid stressed
medium depends on its polarization as regard to the dress, the velocity of the shear wave is
measured for each amount of stress with the rod in the horizonta and vertica postion.
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Fig. 1. a) Experimental set-up. A transducer is set in the middle of a rod mounted on a
vibrator. A low frequency pulse propagates in the medium and the displacements are
computed from the A-scan stored in a memory. b) Picture of the set-up. The transducer (the

black disk) is in the middle of a Plexiglas rod and the black vibrator is visible in the back
ground.
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Fig. 2 : Experimental displacement in an Agar-gelatine based phantom. The maximum

ampl itudle of the 50 Hz pulseis 120 um. A phase analysis gives the velocity of the shear wave:
248m.s-.



[I-Theory

Hugues and Kelly [2] have established expressons of the velocity of dastic waves in a
uniaxid-stressed solid as function of the second order (Lamé coefficients, |, ) and the third
order moduli (Landau coefficients, A, B, C).
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In equetions (1, 2, 3), Vp dands for the velocity of the compressond wave, v¢ for the
velocity of the shear wave with a polarizetion pardle to the stress axis and vi for the

velocity of the shear wave with a polarization perpendicular to the stress axis. In an wunstressed
medium (s = 0), one can easlly verify that the velocities correspond to an isotropic solid.

I11-Results and discussion

On the experimentd results of the figure 4, the fird observation is that dl moduli
increases which is a cdear evidence of a non linear behavior of the agar-gdatin based
phantom. The perpendicular dastic modulus increases by 4% and the pardld modulus by
28%. Now from these dopes and using the set of equation (2, 3), one can deduce the three
falowing vdues -0,2 MPa, -9.8 GPa for the Landau coefficients A, B respectively. The huge
difference between these third order moduli is driking sSnce in more conventiond medium
such as metd, rocks or crysas they are of the same order of magnitude. Now the last Landau
coefficient C can be deduced from results found in the literature. Indeed in [11], with a
thermodynamic experimenta set-up, Everbach measured the non-linear coefficient b =3.6 in
gdlatin based phantom. Since b is expressed as function of the Landau coefficients as

b:-—-——3.64, (4)

we findly obtan C=18GPa The expeimentd erors on these quantitative evduation are
mainly influenced by diffraction biases cited earlier. Neverthdess, the gap between the first
(A) and the two bst Landau coefficient (B and C) remains huge. In order to judify this result,
we mug recdl how Landau introduced these coefficients. A third order development of the
eadic internad energy in an isotropic solid (equetion 5) is expressed as function of the Lamé
and the Landau coefficients:

e= m'lizk + (I + “)UIZI +§uikuilukl + Bui2ku|I +%Uﬁ (5)

In equation 5, the first coefficient p in front of a shear strain is 10° smaler than the coefficient
| in front of the compression srain (one has to keep in mind the ader of magnitude of the

second order moduli in the Agar-gdatin based phantom, typicdly | =2.2 GPa, pu=6.5 KPa).
Thus it is not surprisng for the third order coefficient A in front of shear dran terms to



present a very smal vaue compared to the mefficient B and C in front of terms that contain
compresson drain. So it appears that soft solids are characterized by a huge difference
between both second order and third order moduli.
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Fig. 3: Experimental shear and compression moduli as function of the uniaxial stress.
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