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Abstract  

Transient elastography is a powerful tool to measure the velocity of low frequency 
shear waves in soft tissues and thus to determine the second order elastic moduli µ. In this 
paper, it is shown how transient elastography can also achieve the third-order elastic moduli 
of an Agar-gelatin based phantom. This method requires velocity measurements of polarized 
elastic waves measured in a statically stressed isotropic medium. A static uniaxial-stress 
induces a transverse isotropy in solids. In this special case, the anisotropy is not caused by 
linear elastic coefficients but by the third order non linear elastic constants. Consequently, the 
velocity variations of the low frequency (50 Hz) polarized shear waves as function of the 
applied stress allows one to measure the third order Landau moduli A, B, C. The several 
orders of magnitude found between these three constants can be justify from the expression of 
the internal energy. 

 
Introduction 

Acoustoelasticity is a well-established technique [1] to experimentally measure third 
order elastic constants in solids such as metals [2], crystals [3] or rocks [4]. It consists in 
measuring the velocity of ultrasonic waves in stressed solids. The third order moduli are 
deduced from the slope of the velocity as function of static hydrostatic pressure or uniaxial 
stress. So far no such measurements have been made in soft tissue since it has long been 
considered as liquid-like medium from an ultrasonic point of view. However, like in all solids, 
shear waves do propagate in soft tissues at low frequency (50 Hz typically) [5,6]. As it is 
shown in this paper, the velocity of these shear waves are modified if the medium is submitted 
to a uniaxial-stress (which is the evidence of a deviation from the Hooke’s law). In such a 
medium, the uniaxial-stress induces transverse isotropy [7]. Thus a quantitative evaluation of 
this transverse isotropy with the technique of transient elastography leads to the measurement 
of the nonlinear coefficients.  
 
I-Experiment 
 

The experiments presented in the following section are lead in a model of soft tissues: 
an Agar-gelatin based phantom. A 5 MHz transducer is mounted in the middle of a rod fixed 
on a vibrator (Brüel&Kjaer, type 4810). The whole system is applied at the surface of the 
phantom so that the ultrasonic beam is horizontal (Fig.1).  A rigid Plexiglas plate is placed on 
the top and loads can be added to control the uniaxial-stress in the sample. The transducer 
works as a pulse-echo system and backscattered signals sampled at 50 MHz are stored in a 
2Mo memory with a recurrence frequency of typically 3000 Hz.  The low frequency pulse (50 
Hz central frequency) propagates in the medium as a shear wave and the longitudinal 
displacements are measured with a cross-correlation algorithm between successive A-scans 
[8]. This technique is known as transient elastography [9]. On the seismic-like representation 
of the displacements (Fig. 2) obtained in an unstressed medium, the maximum amplitude of 
the 50 Hz pulse is 120 µm. The shear wave longitudinal component appears at each depth 
with a phase delay inversely proportional to its velocity. Actually the velocity (2.48m.s-1) is 
extracted with a simple phase analysis at the central frequency. It is shown in [10] that the rod 



source (80 mm long) allows one to generate shear waves with a polarization perpendicular to 
the rod in the first centimeters. Since the velocity of shear waves in a uniaxial stressed 
medium depends on its polarization as regard to the stress, the velocity of the shear wave is 
measured for each amount of stress with the rod in the horizontal and vertical position.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1: a) Experimental set-up. A transducer is set in the middle of a rod mounted on a 
vibrator. A low frequency pulse propagates in the medium and the displacements  are 
computed from the A-scan stored in a memory. b) Picture of the set-up. The transducer (the 
black disk) is in the middle of a Plexiglas rod and the black vibrator is visible in the back 
ground.  
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Fig. 2 : Experimental displacement in an Agar-gelatine based phantom. The maximum 
amplitude of the 50 Hz pulse is 120 µm. A phase analysis gives the velocity of the shear wave: 
2.48m.s-1. 
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II-Theory 
 

Hugues and Kelly [2] have established expressions of the velocity of elastic waves in a 
uniaxial-stressed solid as function of the second order (Lamé coefficients, λ, µ) and the third 
order moduli (Landau coefficients, A, B, C).   
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In equations (1, 2, 3), VP stands for the velocity of the compressional wave, //
SV  for the 

velocity of the shear wave with a polarization parallel to the stress axis and ⊥
SV  for the 

velocity of the shear wave with a polarization perpendicular to the stress axis. In an unstressed 
medium (σ = 0), one can easily verify that the velocities correspond to an isotropic solid.  

 
 
III-Results and discussion 
 

On the experimental results of the figure 4, the first observation is that all moduli 
increases which is a clear evidence of a non linear behavior of the agar-gelatin based 
phantom. The perpendicular elastic modulus increases by  4% and the parallel modulus by 
28%. Now from these slopes and using the set of equation (2, 3), one can deduce the three 
following values -0,2 MPa, -9.8 GPa for the Landau coefficients A, B respectively. The huge 
difference between these third order moduli is striking since in more conventional medium 
such as metal, rocks or crystals they are of the same order of magnitude. Now the last Landau 
coefficient C can be deduced from results found in the literature. Indeed in [11], with a 
thermodynamic experimental set-up, Everbach measured the non-linear coefficient β = 3.6 in 
gelatin based phantom. Since β is expressed as function of the Landau coefficients as  
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we finally obtain C = 18 GPa. The experimental errors on these quantitative evaluation are 
mainly influenced by diffraction biases cited earlier. Nevertheless, the gap between the first 
(A) and the two last Landau coefficient (B and C) remains huge. In order to justify this result, 
we must recall how Landau introduced these coefficients. A third order development of the 
elastic internal energy in an isotropic solid (equation 5) is expressed as function of the Lamé 
and the Landau coefficients: 
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In equation 5, the first coefficient µ in front of a shear strain is 106 smaller than the coefficient 
λ in front of the compression strain (one has to keep in mind the order of magnitude of the 
second order moduli in the Agar-gelatin based phantom, typically λ = 2.2 GPa, µ = 6.5 KPa).  
Thus it is not surprising for the third order coefficient A in front of shear strain terms to 



present a very small value compared to the coefficient B and C in front of terms that contain 
compression strain. So it appears that soft solids are characterized by a huge difference 
between both second order and third order moduli. 
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Fig. 3 : Experimental shear and compression  moduli  as function of the uniaxial stress.  
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